搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

释气对介质沿面闪络击穿影响的粒子模拟

董烨 董志伟 周前红 杨温渊 周海京

引用本文:
Citation:

释气对介质沿面闪络击穿影响的粒子模拟

董烨, 董志伟, 周前红, 杨温渊, 周海京

Particle-in-cell simulation on effect of outgassing on flashover and breakdown on dielectric surface in high-power microwave environment

Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing
PDF
导出引用
  • 为研究释气下的高功率微波介质沿面闪络击穿物理机制,首先建立了理论模型,包括:动力学方程、粒子模拟算法、次级电子发射、蒙特卡罗碰撞模型以及碰撞退吸附气体分子模型;其次,基于理论模型,编制了1D3V PIC-MCC程序,分别研究了弱退吸附、强退吸附以及释气分子运动速率对沿面闪络击穿的影响. 研究结果表明:介质沿面闪络击穿本质是沉积功率的持续增加. 弱退吸附下,次级电子倍增占优,随着退吸附系数的增加,碰撞电离效应对次级电子倍增有促进作用,主要表现为介质窗表面静电场、表面碰撞电子平均能量以及表面碰撞电子数目的增加,此处的表面碰撞电子主要是次级电子倍增形成的;释气分子运动速率高导致介质面附近气压下降,不利于次级电子与气体分子间碰撞电离过程形成. 强退吸附下,气体碰撞电离效应占优,随着退吸附系数的增加,离子数增加速度表现为电离频率增加的指数增长形式,碰撞电离效应对次级电子倍增有抑制作用,主要表现为介质窗表面静电场为负、表面碰撞电子平均能量的降低,但是表面碰撞电子数目却得以增加,此处的表面碰撞电子主要是贴近介质面的气体碰撞电离形成的;释气分子运动速率高导致气体厚度增加,扩大了气体碰撞电离作用区域,有利于气体碰撞电离.
    For investigating the mechanism of high power microwave flashover and breakdown on dielectric surface with outgassing, firstly, the theoretical modeling is put forward, including dynamic equations, particle-in-cell (PIC) method, secondary emission, Monte-Carlo collision (MCC) method and outgassing model. Secondly, based on the theoretical modeling, the 1D3V PIC-MCC code is programmed by authors. By using this code, the flashover and breakdown on dielectric surface with weak and strong outgassing course under different gas moving velocities are studied numerically. The numerical results are concluded in the following. The flashover and breakdown on dielectric surface are caused by continuous increase of deposited power. For weak outgassing, multipacting is dominant. As outgassing coefficient increases, multipacting is promoted by ionization collision. The typical phenomena are the increases of space-charge field, average energy of surface-collision electrons and the number of surface-collision electrons. Here, the surface-collision electrons are caused by multipacting mostly. With the increase of gas molecule velocity, ionization course is suppressed by gas pressure decreasing near to the dielectric surface. For strong outgassing, ionization collision is dominant. As outgassing coefficient increases, the number of ions increases exponentially with ionization frequency increasing, multipacting is suppressed by ionization collision. The typical phenomena are the negative value of space-charge field on dielectric surface, the decrease of average energy of surface-collision electrons, and the exponential increase of surface-collision electrons caused by ionization collision near to dielectric surface. Here, the surface-collision electrons are caused by ionization mostly. With the increase of gas molecule velocity, the depth of gas is enlarged, thereby promoting the ionization collision.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB328904)、国家自然科学基金(批准号:11305015,11105018)、中国工程物理研究院科学技术发展基金(批准号:2012B0402064,2009B0402046)和国家高技术研究发展计划资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328904), the National Natural Science Foundation of China (Grant Nos. 11305015, 11105018), the Science Foundation of China Academy of Engineering Physics, China (Grant Nos. 2012B0402064, 2009B0402046), and the National High Technology Research and Development Program of China.
    [1]

    Barker R J, Schamiloglu E 2001 High-power Microwaves Sources and Technologies (Piscataway, New Jersey: IEEE Press, 2001) pp325–375

    [2]

    Neuber A, Edmiston G, Krile J 2007 IEEE Trans on Magnetics 43 496

    [3]

    Ford P J, Beeson S R, Krompholz H G, Neuber A A 2012 Phys. Plasmas 19 073503

    [4]

    Chang C, Liu G, Tang C, Chen C, Fang J, Hou Q 2008 Phys. Plasmas 15 093508

    [5]

    Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702

    [6]

    Zhang P, Lau Y Y, Franzi M, Gilgenbach R M 2011 Phys. Plasmas 19 053508

    [7]

    Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504

    [8]

    Kim H C, Verboncoeur J P 2007 IEEE Trans. on Dielectr. Electr. Insul. 14 766

    [9]

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵, 王建国 2011物理学报 60 025217]

    [10]

    Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵, 王建国 2009 物理学报 58 3268]

    [11]

    Dong Y, Zhou Q H, Dong Z W, Yang W Y, Zhou H J, Sun H F 2013 High Power Laser and Particle Beams 25 950 (in Chinese) [董烨, 周前红, 董志伟, 杨温渊, 周海京, 孙会芳 2013 强激光与粒子束 25 950]

    [12]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2013 High Power Laser and Particle Beams 25 1215 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2013 强激光与粒子束 25 1215]

    [13]

    Vaughan J R M 1993 IEEE Trans Electron Dev. 40 830

    [14]

    Vahedi V, Surendra M 1995 Comp. Phys. Commun. 87 179

    [15]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

  • [1]

    Barker R J, Schamiloglu E 2001 High-power Microwaves Sources and Technologies (Piscataway, New Jersey: IEEE Press, 2001) pp325–375

    [2]

    Neuber A, Edmiston G, Krile J 2007 IEEE Trans on Magnetics 43 496

    [3]

    Ford P J, Beeson S R, Krompholz H G, Neuber A A 2012 Phys. Plasmas 19 073503

    [4]

    Chang C, Liu G, Tang C, Chen C, Fang J, Hou Q 2008 Phys. Plasmas 15 093508

    [5]

    Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702

    [6]

    Zhang P, Lau Y Y, Franzi M, Gilgenbach R M 2011 Phys. Plasmas 19 053508

    [7]

    Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504

    [8]

    Kim H C, Verboncoeur J P 2007 IEEE Trans. on Dielectr. Electr. Insul. 14 766

    [9]

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵, 王建国 2011物理学报 60 025217]

    [10]

    Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵, 王建国 2009 物理学报 58 3268]

    [11]

    Dong Y, Zhou Q H, Dong Z W, Yang W Y, Zhou H J, Sun H F 2013 High Power Laser and Particle Beams 25 950 (in Chinese) [董烨, 周前红, 董志伟, 杨温渊, 周海京, 孙会芳 2013 强激光与粒子束 25 950]

    [12]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2013 High Power Laser and Particle Beams 25 1215 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2013 强激光与粒子束 25 1215]

    [13]

    Vaughan J R M 1993 IEEE Trans Electron Dev. 40 830

    [14]

    Vahedi V, Surendra M 1995 Comp. Phys. Commun. 87 179

    [15]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

  • [1] 舒盼盼, 赵朋程, 王瑞. 110 GHz微波输出窗内表面次级电子倍增特性的电磁粒子模拟. 物理学报, 2023, 72(9): 095202. doi: 10.7498/aps.72.20222235
    [2] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究. 物理学报, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [3] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [4] 李志刚, 程立, 袁忠才, 汪家春, 时家明. 高功率微波作用下等离子体中的雪崩效应研究. 物理学报, 2017, 66(19): 195202. doi: 10.7498/aps.66.195202
    [5] 冉茂怡, 胡耀垓, 赵正予, 张援农. 高功率微波注入对流层对氟利昂的影响. 物理学报, 2017, 66(4): 045101. doi: 10.7498/aps.66.045101
    [6] 魏进进, 周东方, 余道杰, 胡涛, 侯德亭, 张德伟, 雷雪, 胡俊杰. 高功率微波作用下O-离子解吸附产生种子电子过程. 物理学报, 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [7] 唐涛. 高功率微波土壤击穿的数值验证研究. 物理学报, 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [8] 宋玮, 邵浩, 张治强, 黄惠军, 李佳伟, 王康懿, 景洪, 刘英君, 崔新红. 射频击穿等离子体对高功率微波传输特性的影响. 物理学报, 2014, 63(6): 064101. doi: 10.7498/aps.63.064101
    [9] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应. 物理学报, 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [10] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理. 物理学报, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [11] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究. 物理学报, 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [12] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [13] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究. 物理学报, 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [14] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [15] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究. 物理学报, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [16] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [17] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究. 物理学报, 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [18] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响. 物理学报, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [19] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [20] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究. 物理学报, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
计量
  • 文章访问数:  5354
  • PDF下载量:  568
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-06
  • 修回日期:  2013-10-21
  • 刊出日期:  2014-01-05

/

返回文章
返回