搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zr-2.5Sn合金高温腐蚀过程的相场模拟研究

刘续希 高士森 喇永孝 柳文波

引用本文:
Citation:

Zr-2.5Sn合金高温腐蚀过程的相场模拟研究

刘续希, 高士森, 喇永孝, 柳文波

Phase-field simulation of high-temperature corrosion of binary Zr-2.5Sn alloys

Liu Xu-Xi, Gao Shi-Sen, La Yong-Xiao, Liu Wen-Bo
PDF
导出引用
  • 本工作利用腐蚀电化学计算腐蚀界面能,构建了锆合金腐蚀过程的相场模型。首先,利用所建立的模型模拟了Zr-2.5Sn合金均匀腐蚀过程,模拟结果显示该合金的腐蚀动力学曲线符合立方规律,与实验结果一致。分析发现,在氧化层生成的初期,氧化层生长速率很高,但是受温度的影响不明显;随着氧化层厚度的增长,温度对氧化层生长曲线的影响变大,温度越高腐蚀速率越快。多晶Zr-2.5Sn合金腐蚀行为的模拟结果表明,在锆合金基体晶界处由于具有更大的氧扩散速率,氧化速率加快,并在金属-氧化层界面朝向金属基体一侧了形成沿晶界的具有更高浓度的O2-带,且对氧化腐蚀速率的影响主要表现在氧化初期;相场模拟获得的腐蚀动力学曲线与实验结果符合非常好。
    Due to the small neutron absorption cross section and excellent thermal creep performance, zirconium alloy is one of the most important cladding materials for fuel rods in commercial fission reactors. However, quantitative analysis of the effects of temperature and grain boundaries on the corrosion microstructure evolution of zirconium alloys is still needed. It is of great significance to establish a phase field simulation for the corrosion process of polycrystalline zirconium alloy and systematically investigate the thermodynamic impact. In this study, the phase field model of the corrosion process in zirconium alloys was developed by incorporating corrosion electrochemistry to calculate the interfacial energy at the metal-oxide and oxide-fluid boundaries. Then model was then employed to investigate the uniform corrosion behavior on the surface of Zr-2.5Sn alloy, which demonstrated that the corrosion kinetics curve followed a cubic rule. Subsequently, the influence of temperature on the corrosion thickening curve of zirconium alloys was examined, and good agreement between simulation and experimental results was achieved. It was observed that during early stages of oxide layer formation, there is a high growth rate with minimal temperature dependence; however, as the oxide layer thickness increases, temperature becomes a significant factor affecting its growth rate, with higher temperatures resulting in faster corrosion rates. Furthermore, an investigation into the effect of polycrystalline zirconium alloy matrices on corrosion rates revealed that grain boundaries accelerate oxide layer thickening due to enhanced oxygen diffusion rates. Along these grain boundaries towards the metal matrix at metal-oxide interfaces, regions with higher O2- concentrations form an O2- band which primarily influences oxidation-corrosion rates during initial oxidation stages.
  • [1]

    Kai J J, Huang W I, Chou H Y 1990 J. Nucl. Mater 170 193

    [2]

    Zhao W, Quan Q, Zhang S, Yang X, Wen H, Wu Y, Liu X, Cao X, Wang B 2023 Radiat. Phys. Chem. 209 110986

    [3]

    Cann C D, So C B, Styles R C, Coleman C E 1993 J. Nucl. Mater. 205 267

    [4]

    Jones R H, Simonen E P 1994 Mater. Sci. Eng. 176 211

    [5]

    Hu J, Liu J L, Lozano P S, Grovenor C R M, Christensen M, Wolf W, Wimmer E, Mader E V 2019 Acta Mater. 180 105

    [6]

    Wei T, Dai X, Long C, Sun C, Long S, Zheng J, Wang P, Jia Y, Zhang J 2021 Corros. Sci. 192 109808

    [7]

    Tian Z, Peng J, Lin X, Hu Y, Yao M, Xie Y, Liang X, Zhou B 2024 Corros. Sci. 202 111937

    [8]

    Ferreirós P A, Polack E C S, Lanzani L A, Alonso P R, Quirós P D, Mieza J I, Rubiolo G H 2021 J. Nucl. Mater 553 153039

    [9]

    Jiang G, Xu D, Yang W, Liu L, Zhi Y, Yang J 2022 Prog. Nucl. Energy 154 104490

    [10]

    Yuan R, Xie Y P, Li T, Xu C H, Yao M Y, Xu J X, Guo H B, Zhou B X 2021 Acta Mater. 209 116804

    [11]

    Mcdeavitt S M, Billings G W, Indacochea J E 2002 J. Mater. Sci. 37 3765

    [12]

    Jerlerud P R, Toffolon M C, Joubert J M, Sundman B 2008 CALPHAD 32 593

    [13]

    Asle Zaeem M, El Kadiri H 2014 Comput. Mater. Sci. 89 122

    [14]

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin 69 226401(in Chinese)[张更,王巧,沙立婷,李亚捷,王达,施思齐 2020 物理学报 69 226401]

    [15]

    Chen L Q, Zhao Y 2022 Prog. Mater. Sci. 124 100868

    [16]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [17]

    Liu X X, Liu W B, Li B Y, He X F, Yang Z X, Yun D 2022 Acta Metal. Sin 58 943(in Chinese)[刘续希,柳文波,李博岩,贺新福,杨朝曦,恽迪 2022 金属学报 58 943]

    [18]

    Mai W, Soghrati S 2017 Corros. Sci. 125 87

    [19]

    Fang X R, Pan Z C, Ma R J, Chen A R 2023 Comput. Method. Appl. M 414

    [20]

    Feng L, Wang Z P, Lu Y, Zhu C S 2008 Acta Phys. Sin 57 1084 (in Chinese)[冯力,王智平,路阳,朱昌盛 2008 物理学报 57 1084]

    [21]

    Yang C, Huang H B, Liu W B, Wang J S, Wang J, Jafri H M, Liu Y, Han G M, Song H F, Chen L Q 2021 Adv. Theor. Simul. 4 2000162

    [22]

    Zhou F Y, Qiu K J, Bian D, Zheng Y F, Lin J P 2014 J. Mater. Sci. Technol. 30 299

    [23]

    Dinsdale A T 1991 CALPHAD 15 317

    [24]

    Aricó S F, Gribaudo L M, 1999 Scripta Mater. 41 159

    [25]

    Wang C, Zinkevich M, Aldinger F 2004 CALPHAD 28 281

    [26]

    Yin T, Lee J, Moosavi K E, Jung I H 2021 Ceram. Int. 47 29267

    [27]

    Isomäki I, Hämäläinen M, Gierlotka W, Onderka B, Fitzner K 2006 J. Alloys Compd. 422 173

    [28]

    Fang X R, Pan Z C, Chen A R, Tian H, Ma R J 2023 Eng. Fract. Mech. 281 109131

    [29]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085

    [30]

    Larché F C, Cahn J W 1985 Acta Metall. 33 331

    [31]

    Cahn J W 1961 Acta Metall. 9 795

    [32]

    Cox B, Pemsler J P 1968 J. Nucl. Mater 28 73

    [33]

    Ritchie I G, Atrens A 1977 J. Nucl. Mater 67 254

    [34]

    Keneshea F J, Douglass D L 1971 Oxid. Met. 3 1

    [35]

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin 71 026103(in Chinese)[姜彦博,柳文波,孙志鹏,喇永孝,恽迪 2022 物理学报 71 026103]

    [36]

    Qiu K, Wang R, Peng C, Lu X, Wang N 2015 CALPHAD 48 175

    [37]

    Fisher E, Renken C 1964 Phys. Rev. 135 A482

    [38]

    Fogaing E Y, Lorgouilloux Y, Huger M, Gault C P 2006 J. Mater. Sci. 41 7663

    [39]

    Mirgorodsky A, Smirnov M, Quintard P 1997 Phys. Rev. B 55 19

    [40]

    Fan D, Chen L Q 1997 Acta Mater. 45 611

    [41]

    Liu J Z 2007 Nuclear Structure Material (Beijing: Chemical Industry Press) p89 (in Chinese)[刘建章 2007 核结构材料 (北京: 化学工业出版社) 第89页]

    [42]

    Bi Y, Zhang X, Lu L, Xu Z, Xie Z, Chen B, Liang Z, Sun Z, Luo Z 2023 J. Mater. Res. Technol. 26 5888

    [43]

    Gwinner B, Bataillon C, Chelagemdib R, Gruet N, Lorentz V, Puga B 2023 Electrochim. Acta 470 143334

    [44]

    Zhang M H, Liu S D, Jiang J Y, Wei W C 2023 T Nonferr Metal. Soc. 33 1963

    [45]

    Liu J L, Yu H B, Karamched P, Hu J, He G Z, Goran D, Hughes G M, Wilkinson A J, Sergio L P, Grovenor C R 2019 Acta Mater. 179 328

  • [1] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn、Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20240602
    [2] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, doi: 10.7498/aps.71.20211440
    [3] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [4] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟. 物理学报, doi: 10.7498/aps.70.20201840
    [5] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20191069
    [6] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, doi: 10.7498/aps.69.20200310
    [7] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, doi: 10.7498/aps.68.20182125
    [8] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, doi: 10.7498/aps.64.060201
    [9] 危洪清, 龙志林, 许福, 张平, 唐翌. Cu45Zr55-xAlx (x=3, 7, 12)块体非晶合金的第一性原理分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.118101
    [10] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟. 物理学报, doi: 10.7498/aps.62.106401
    [11] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, doi: 10.7498/aps.61.228102
    [12] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, doi: 10.7498/aps.60.040507
    [13] 张辉, 吴迪, 张国英, 肖明珠. 铜基大块非晶合金添加微量元素对腐蚀行为的影响机理研究. 物理学报, doi: 10.7498/aps.59.488
    [14] 马颖, 陈尚达, 谢国锋. SiC晶界薄膜的变电荷分子动力学模拟. 物理学报, doi: 10.7498/aps.58.7792
    [15] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟. 物理学报, doi: 10.7498/aps.58.343
    [16] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, doi: 10.7498/aps.55.1341
    [17] 柳 林, 孙 民, 谌 祺, 刘 兵, 邱春雷. Zr-Cu-Ni-Al-Nb大块非晶合金的晶化行为、力学性能及电化学腐蚀行为的研究. 物理学报, doi: 10.7498/aps.55.1930
    [18] 赵代平, 荆 涛, 柳百成. 相场方法模拟铝合金三维枝晶生长. 物理学报, doi: 10.7498/aps.52.1737
    [19] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, doi: 10.7498/aps.52.2520
    [20] 邬钦祟, 王元生, 吴自勤, 何怡贞. 急冷Al80Mn20合金准晶T相的晶化动力学. 物理学报, doi: 10.7498/aps.37.796
计量
  • 文章访问数:  149
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-31

/

返回文章
返回