搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge掺杂增强R-P结构准二维Sr3Sn2O7陶瓷杂化非本征铁电性的物理机制研究

肖志峰 王守宇 戴雅婷 康新淼 张振华 刘卫芳

引用本文:
Citation:

Ge掺杂增强R-P结构准二维Sr3Sn2O7陶瓷杂化非本征铁电性的物理机制研究

肖志峰, 王守宇, 戴雅婷, 康新淼, 张振华, 刘卫芳

Research on physical mechanism of Ge doping to enhance hybrid improper ferroelectric properties of quasi-2D Sr3Sn2O7 ceramics with R-P structure

Xiao Zhi-Feng, Wang Shou-Yu, Dai Ya-Ting, Kang Xin-Miao, Zhang Zhen-Hua, Liu Wei-Fang
PDF
导出引用
  • 准二维的杂化非本征铁电体在实现强磁电耦合的单相室温多铁性方面具有很大的潜力,然而此类陶瓷样品通常有着较高的矫顽场和较低的剩余极化强度,严重阻碍了对其的研究和应用。本文成功制备了高质量且单相性较好的具有准二维的双层Ruddlesden-Popper(R-P)型氧化物Sr3Sn2-xGexO7陶瓷样品,观察到了较高的剩余极化和与Sr3Sn2O7单晶接近的矫顽场。微量Ge元素对B位Sn掺杂后极化强度显著增强,同时进一步降低了Sr3Sn2O7样品的矫顽场。结合晶格动力学研究,我们对样品的拉曼和红外光谱进行了标定,得出掺杂样品铁电性能的增强可能源于氧八面体倾侧幅度的增大和旋转幅度减小。Berry相位法和波恩有效电荷模型进一步证实了铁电性能的增强。通过紫外可见光光度计测试得到Sr3Sn2O7样品的光学带隙为3.91eV,与采用Becke-Johnson势结合局部密度近似(MBJ-LDA)所计算的结果基本一致。总之,这项研究为此类杂化非本征铁电体的制备及铁电性能的调控提供了参考,有望促进铁电陶瓷在各种电容器和非易失性存储器件中的广泛应用。
    Hybrid improper ferroelectricity with quasi-two-dimensional structures has attracted much attention recently due to its great potential in achieving strong magnetoelectric coupling and room-temperature multiferroicity in a single phase. However, recent studies showed that they typically exhibit high coercive field and low remnant polarization in ceramics, which severely hinder their application. In this work, high-quality Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics with a Ruddlesden-Popper (R-P) structure were successfully prepared, and their crystal structure and electrical properties were investigated in detail. It is found that Sr3Sn2O7 ceramics exhibit lower coercive field that is close to that of Sr3Sn2O7 single crystal. Moreover, via minor amount of Ge doping, significant enhancement in polarization is achieved from 0.34μC/cm2 of Sr3Sn2O7 to 0.61 μC/cm2 of Sr3Sn1.99Ge0.01O7. Combined with crystal lattice dynamic studies, we analyzed the Raman and infrared response of the samples, which shows the information of the tilting and rotation of the oxygen octahedra in the samples. The improved ferroelectricity after doping may be attributed to the increased amplitude of the tilt mode and the decreased amplitude of the rotation mode. Besides, the enhanced ferroelectric properties through Ge doping and its mechanism are further investigated by the Berry phase approach and the Born effective charge method. Furthermore, via UV-visible spectroscopy optical bandgap is determined to be 3.91 and 3.95 eV for Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics, respectively. Using the Becke-Johnson potential combined with the local density approximation correlation, the bandgap is calculated and is found to be in close agreement with the experimental results. And the electronic excitations could be assigned as O 2p to Sn 5s (Ge 4s) charge transfer excitations. The effect of Ge doping on the ability of Sr3Sn2O7 to gain and lose electrons and the bonding strength of Sn-O bonds was analyzed via two-dimensional charge density difference. In conclusion, this study provides insights into the synthesis method and modulation of ferroelectric properties of hybrid improper ferroelectrics Sr3Sn2O7, potentially facilitating their widespread application in various capacitors and non-volatile memory devices.
  • [1]

    Scott J F 2007 Science 315 954

    [2]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    [3]

    Benedek N A, Fennie C J 2011 Phys. Rev. Lett. 106 107204

    [4]

    Liu X Q, Wu S Y, Zhu X L, Chen X M 2018 Acta Phys. Sin. 67 50(in Chinese)[刘小强,吴淑雅,朱晓莉,陈湘明2018物理学报67 50]

    [5]

    Zhang H W, Yuan K J, Tang H, Zheng P F, Zhou W, Wang C, Liu W F 2023 J. Solid State Chem. 325 124180

    [6]

    Wu X X, Wang S Y, Wong-Ng W, Gu Q, Jiang Y, Wang C, Ma S, Liu W F 2021 J. Adv. Ceram. 10 120

    [7]

    Wang Y Z, Huang F T, Luo X, Gao B, Cheong S W 2017 Adv. Mater. 29 1601288

    [8]

    Xu X H, Wang Y Z, Huang F T, Du K, Nowadnick E A, Cheong S W 2020 Adv. Funct. Mater. 30 2003623

    [9]

    Gu Q, Liu W F, Wong-Ng W, Wu X X, Wang C, Zhou W, Wang S Y 2021 J. Electroceram. 47 42

    [10]

    Lu J J, Liu X Q, Ma X, Fu M S, Yuan A, Wu Y J, Chen X M 2019 J. Appl. Phys. 125 044101

    [11]

    Chen B H, Sun T L, Liu X Q, Zhu X L, Tian H, Chen X M 2020 Appl. Phys. Lett. 116 042903

    [12]

    Chen Q S, Zhang B H, Chen B H, Liu X Q, Chen X M 2022 J. Appl. Phys. 131 184102

    [13]

    Wu H, Gao Z, Cai W, Gao R, Chen D, Chen G, Deng X, Wang Z, Lei X, Wang X, Fu C 2022 Mater. Today Chem. 26 101226

    [14]

    Fukasawa I, Maruyama Y, Yoshida S, Fujita K, Takahashi H, Ohgaki M, Nagao M, Watauchi S, Gopalan V, Tanaka K, Tanaka I 2023 J. Cryst. Growth 615 127241

    [15]

    Xiao Z F, Xiao T Q, Wang S Y, Huang S, Wei B D, Liu W F 2024 J. Am. Ceram. Soc. 107 334

    [16]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406

    [19]

    Becke A D, Johnson E R 2006 J. Chem. Phys. 124 221101

    [20]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [21]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1

    [22]

    Resta R 1994 Rev. Mod. Phys. 66 899

    [23]

    Meyer B, Vanderbilt D 2002 Phys. Rev. B 65 104111

    [24]

    Kroumova E, Aroyo M I, Perez-Mato J M, Kirov A, Capillas C, Ivantchev S, Wondratschek H 2003 Phase Transitions 76 155

    [25]

    Skelton J M, Burton L A, Jackson A J, Oba F, Parker S C, Walsh A 2017 Phys. Chem. Chem. Phys. 19 12452

    [26]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [27]

    Wiles D B, Young R A 1981 J. Appl. Crystallogr. 14 149

    [28]

    Lufaso M W, Woodward P M 2004 Acta Crystallogr., Sect. B 60 10

    [29]

    Liu X Q, Chen B H, Lu J J, Hu Z Z, Chen X M 2018 Appl. Phys. Lett. 113

    [30]

    Fawcett I D, Kim E, Greenblatt M, Croft M, Bendersky L A 2000 Phys. Rev. B 62 6485

    [31]

    Huang L F, Lu X Z, Rondinelli J M 2016 Phys. Rev. Lett. 117 115901

    [32]

    Mulder A T, Benedek N A, Rondinelli J M, Fennie C J 2013 Adv. Funct. Mater. 23 4810

    [33]

    Huang K 2012 Solid State Physics (Beijing:Higher Education Press) p78(in Chinese)[黄昆2012固体物理学(北京:高等教育出版社)第78页]

    [34]

    Smith K A, Ramkumar S P, Harms N C, Clune A J, Xu X, Cheong S W, Liu Z, Nowadnick E A, Musfeldt J L 2021 Phys. Rev. B 104 064106

    [35]

    Yuan K J, Zhang H W, Gu Q, Xiao T Q, Li Z Y, Wong-Ng W K, Zhou W, Wang C, Wang S Y, Liu W F 2023 J. Am. Ceram. Soc. 106 2455

    [36]

    Sun X F, Yang X M, Xu C, Gan X C, Zhang W J, Gao Z R, Cai H L, Wu X S 2019 Chem. Phys. Lett. 728 74

    [37]

    Singh M K, Karan N K, Katiyar R S, Scott J F, Jang H M 2008 J. Phys.:Condens. Matter 20 055210

    [38]

    Spaldin N A 2012 J. Solid State Chem. 195 2

    [39]

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 014113

    [40]

    Filip L D, Plugaru N, Pintilie L 2019 Modell. Simul. Mater. Sci. Eng. 27 045008

    [41]

    Kamimura S, Obukuro Y, Matsushima S, Nakamura H, Arai M, Xu C-N 2015 J. Solid State Chem. 232 163

    [42]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status. 15 627

    [43]

    Kamimura S, Yamada H, Xu C N 2012 Appl. Phys. Lett. 101 091113

    [44]

    Kumaradhas P, Gopalan R S, Kulkarni G U 1999 Proc. Indian Acad. Sci.(Chem. Sci.)111 569

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.73.20231436
    [2] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20221544
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, doi: 10.7498/aps.72.20221630
    [4] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20221847
    [5] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20212254
    [6] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201939
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190509
    [8] 刘小强, 吴淑雅, 朱晓莉, 陈湘明. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, doi: 10.7498/aps.67.20180317
    [9] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, doi: 10.7498/aps.66.246801
    [10] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, doi: 10.7498/aps.65.237101
    [11] 高淼, 孔鑫, 卢仲毅, 向涛. Li2C2中电声耦合及超导电性的第一性原理计算研究. 物理学报, doi: 10.7498/aps.64.214701
    [12] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.047102
    [13] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, doi: 10.7498/aps.62.083102
    [14] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.60.117105
    [15] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.3414
    [16] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.58.1173
    [17] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.57.2368
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7794
    [19] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, doi: 10.7498/aps.57.4428
    [20] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.438
计量
  • 文章访问数:  166
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-30

/

返回文章
返回