搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷型复合燃料烧结过程的相场模拟研究

廖宇轩 申文龙 吴学志 喇永孝 柳文波

引用本文:
Citation:

陶瓷型复合燃料烧结过程的相场模拟研究

廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波

Phase-Field Simulation of the Sintering Process of Ceramic Composite Fuel

Liao Yu-Xuan, Shen Wen-Long, Wu Xue-Zhi, La Yong-Xiao, Liu Wen-Bo
PDF
导出引用
  • 本工作建立了陶瓷型复合燃料两相烧结过程的相场模型,利用该模型模拟了UN-U3Si2复合燃料的烧结过程。首先,研究了两相双晶粒在烧结过程中的烧结颈的演化过程。结果表明,具有较高表面能的晶粒在烧结颈形成过程中的表面形变更明显;两相双晶粒形成的平衡二面角的大小取决于两相的晶界能与表面能的比值;两相不等大的双晶粒之间未发生大晶粒吞噬小晶粒现象。然后,研究了烧结过程中的两相三晶粒之间的气孔收缩和三叉晶界的演化,以揭示符合燃料烧结过程中气孔的演变规律。结果发现,两相三晶粒形成的三叉晶界夹角偏离了120°,晶界处的高能势垒阻碍了气孔的空位沿晶界的扩散,导致三叉晶界处的气孔收缩速率减慢。最后,研究了两相陶瓷型复合燃料的多晶烧结过程。不同体积分数比的两相多晶烧结组织形貌演化的模拟结果表明,晶界扩散在两相烧结过程中起主要作用,体积分数较大的相的晶粒生长占据主导地位,两相晶粒之间存在阻碍晶界迁移的作用,同相晶粒之间存在晶粒迁移现象。
    Due to the inadequacy of the existing experimental techniques, it is difficult to observe the microstructure evolution during the sintering process in real time, resulting in a lack of in-depth understanding of the sintering mechanism of two-phase composite fuels. Therefore, it is greatly important to carry out theoretical simulation studies on the sintering process of composite fuels. In this work, a phase-field model of the two-phase sintering process of ceramic composite fuel is established, and the sintering process of UN-U3Si2 composite fuel is simulated by using this method. The simulation results show that the surface deformation of the grains with higher surface energy is obvious during the formation of sintering neck. The final equilibrium dihedral angle formed by the two-phase double grains depends on the ratios of the grain boundary energy to the surface energy of the two phases. The phenomenon of large grains swallowing small grains do not occur between the two unequal double grains. Subsequently, the pore shrinkage and the properties of the trident grain boundary between the two-phase three-grain are investigated during the sintering process. It is found that the angle of the trident grain boundary formed by the two-phase three-grain deviates from 120°. The high-energy barrier at the grain boundary impedes the diffusion of the pore vacancies along the grain boundary, resulting in a slowdown of the pore shrinkage rate at the trident grain boundary. In addition, the simulation results of the microstructure evolution of two-phase polycrystalline sintered tissue with different volume fraction ratios show that the grain boundary diffusion plays a major role in the two-phase sintering process. The grain growth of the phase with a larger volume fraction is dominant, and the role of hindering the grain boundary migration between the two-phase grains exists. The phenomenon of grain migration exists among grains of the same phase.
  • [1]

    Kim H G, Yang J H, Kim W J, Koo Y H 2016 Nucl. Eng. Technol. 48 1

    [2]

    Kurata M 2016 Nucl. Eng. Technol. 48 26

    [3]

    Leenaers A, Van den Berghe S, Koonen E, Jacquet P, Jarousse C, Guigon B, Ballagny A, Sannen L 2004 J. Nucl. Mater. 327 121

    [4]

    Zinkle S J, Terrani K A, Gehin J C, Ott L J, Snead L L 2014 J. Nucl. Mater. 448 374

    [5]

    Terrani K A, Wang D, Ott L J, Montgomery R O 2014 J. Nucl. Mater. 448 512

    [6]

    Johnson K D, Raftery A M, Lopes D A, Wallenius J 2016 J. Nucl. Mater. 477 18

    [7]

    Watkins J K, Gonzales A, Wagner A R, Sooby E S, Jaques B J 2021 J. Nucl. Mater. 553 153048

    [8]

    Wood E S, White J T, Nelson A T 2017 J. Nucl. Mater 484 245

    [9]

    Ortega L H, Blamer B J, Evans J A, McDeavitt S M 2016 J. Nucl. Mater. 471 116

    [10]

    White J T, Travis A W, Dunwoody J T, Nelson A T 2017 J. Nucl. Mater. 495 463

    [11]

    Lopes D A, Uygur S, Johnson K D 2017 J. Nucl. Sci. Technol. 54 405

    [12]

    Liu X X, Gao S S, La Y X, Yu D L, Liu W B 2024 Acta Phys. Sin. 73 148201 (in Chinese) [刘续希,高士森,喇永孝,玉栋梁,柳文波 2024 物理学报 73 148201]

    [13]

    Liu D K, Wang Q Y, Zhang T, Zhou Y, Wang X 2024 Acta Phys. Sin. 73 066102 (in Chinese) [刘东昆,王庆宇,张田,周羽,王翔 2024 物理学报 73 066102]

    [14]

    Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72 076102 (in Chinese) [王凯乐,杨文奎,史新成,侯华,赵宇宏 2023 物理学报 72 076102]

    [15]

    Liu M Z, Zhang R J, Fang W, Zhang S Z, Qu X H 2012 Acta. Metall. Sin. 48 1207 (in Chinese) [刘明治,张瑞杰,方伟,章书周,曲选辉 2012 金属学报 48 1207]

    [16]

    Kumar V, Fang Z Z, Fife P C 2010 Mater. Sci. Eng. A528 254

    [17]

    Biswas S, Schwen D, Wang H, Okuniewski M, Tomar V 2018 Comput. Mater. Sci. 148 307

    [18]

    Du L F, Yang S M, Zhu X W, Jiang J, Hui Q, Du H L 2018 J. Mater. Sci. 53 9567

    [19]

    Hötzer J, Seiz M, Kellner M, Rheinheimer W, Nestler B 2019 Acta Mater. 164 184

    [20]

    Wang Y U 2006 Acta Mater. 54 953

    [21]

    Fan D, Chen L Q 1997 Acta Mater. 45 611

    [22]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113

    [23]

    Ahmed K, Yablinsky C A, Schulte A, Allen T, El-Azab A 2013 Modell. Simul. Mater. Sci. Eng. 21 065005

    [24]

    Cahn J W 1961 Acta Metall. 9 795

    [25]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085

    [26]

    Biner S B 2017 Programming Phase-Field Modeling (Switzerland: Springer International Publishing) p18

    [27]

    Holt J B, Almassy M Y 1969 J. Am. Ceram. Soc. 52 631

    [28]

    Qi X Y, Liu W B, He Z B, Wang Y F, Yun D 2023 Acta Metall. Sin. 59 1513 (in Chinese) [戚晓勇,柳文波,何宗倍,王一帆,恽迪 2023 金属学报 59 1513]

    [29]

    Bocharov D, Gryaznov D, Zhukovskii Y F, Kotomin E A 2013 J. Nucl. Mater. 435 102

    [30]

    Cooper M W D, Gamble K A, Capolungo L, Matthews C, Andersson D A, Beeler B, Stanek C R, Metzger K 2021 J. Nucl. Mater. 555 153129

    [31]

    Beeler B, Baskes M, Andersson D, Cooper M W D, Zhang Y F 2019 J. Nucl. Mater. 514 290

    [32]

    Cheniour A, Tonks M R, Gong B, Yao T K, He L F, Harp J M, Beeler B, Zhang Y F, Lian J 2020 J. Nucl. Mater 532 152069

    [33]

    Chockalingam K, Kouznetsova V G, van der Sluis O, Geers M G D 2016 Comput. Methods Appl. Mech. Eng. 312 492

    [34]

    Rahaman M N 1995 Ceramic Processing and Sintering (New York: Marcel Dekker) p446

    [35]

    Riedel H, Svoboda J 1993 Acta Metall. Mater. 41 1929

    [36]

    Sun Z Y, Yang C, Liu W B 2020 Acta Metall. Sin. 56 1295 (in Chinese) [孙正阳,杨超,柳文波 2020 金属学报 56 1295]

    [37]

    Ahmed K, Allen T, El-Azab A 2016 J. Mater. Sci. 51 1261

    [38]

    Yadav V, Vanherpe L, Moelans N 2016 Comput. Mater. Sci. 125 297

  • [1] 刘续希, 高士森, 喇永孝, 玉栋梁, 柳文波. Zr-2.5Sn合金高温腐蚀过程的相场模拟. 物理学报, doi: 10.7498/aps.73.20240393
    [2] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, doi: 10.7498/aps.71.20211440
    [3] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟. 物理学报, doi: 10.7498/aps.70.20201431
    [4] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟. 物理学报, doi: 10.7498/aps.70.20201840
    [5] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, doi: 10.7498/aps.69.20200310
    [6] 郝刚领, 许巧平, 李先雨, 王伟国. 金属粉末压坯烧结过程的内耗研究. 物理学报, doi: 10.7498/aps.68.20190031
    [7] 张军, 陈文雄, 郑成武, 李殿中. γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟. 物理学报, doi: 10.7498/aps.66.070701
    [8] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, doi: 10.7498/aps.64.060201
    [9] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟. 物理学报, doi: 10.7498/aps.62.106401
    [10] 陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京. 铂纳米颗粒生长和表面结构的理论预测. 物理学报, doi: 10.7498/aps.61.076801
    [11] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, doi: 10.7498/aps.61.228102
    [12] 魏承炀, 李赛毅. 温度梯度对晶粒生长行为影响的相场模拟. 物理学报, doi: 10.7498/aps.60.100701
    [13] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟. 物理学报, doi: 10.7498/aps.58.343
    [14] 胡建民, 信江波, 吕 强, 王月媛, 荣剑英. (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x机械合金化粉体的制备及其冷压烧结样品的热电性能研究. 物理学报, doi: 10.7498/aps.55.4843
    [15] 匡安龙, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为. 稀释磁性半导体Sn1-xMnxO2的室温铁磁性. 物理学报, doi: 10.7498/aps.54.2934
    [16] 李 正, 何叶青, 胡伯平, 王震西. 烧结Nd-Fe-B中的热力学影响. 物理学报, doi: 10.7498/aps.54.5400
    [17] 段 鹤, 郑毓峰, 张校刚, 孙言飞, 董有忠. 水热法合成FeS2粉晶及其生长热动力学的研究. 物理学报, doi: 10.7498/aps.54.1659
    [18] 黄 锐, 林璇英, 余云鹏, 林揆训, 姚若河, 黄文勇, 魏俊红, 王照奎, 余楚迎. 多晶硅薄膜低温生长中晶粒大小的控制. 物理学报, doi: 10.7498/aps.53.3950
    [19] 张建民, 徐可为. 银和铜膜中异常晶粒生长和织构变化的实验研究. 物理学报, doi: 10.7498/aps.52.145
    [20] 张建民, 徐可为. 面心立方多晶薄膜中应变能密度对晶粒取向的依赖. 物理学报, doi: 10.7498/aps.51.2562
计量
  • 文章访问数:  181
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-27

/

返回文章
返回