搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

心律失常的多尺度建模、计算与动力学理论进展综述

黄晓东 贺彬烜 宋震 弭元元 屈支林 胡岗

引用本文:
Citation:

心律失常的多尺度建模、计算与动力学理论进展综述

黄晓东, 贺彬烜, 宋震, 弭元元, 屈支林, 胡岗

A review on multiscale modelings, computations, and dynamical theories of arrhythmias

Xiaodong Huang, Binxuan He, Zhen Song, Yuanyuan Mi, Zhilin Qu, Gang Hu
PDF
导出引用
  • 心律失常是当前生物物理交叉学科中发展得比较成熟的一个分支,在实验和理论方面均取得了丰硕的成果.近年来,随着实验数据的积累,人们在多个尺度上发现了更丰富多样的心律失常诱因,这对物理学的研究提出了新的需求和挑战.因此,心肌系统的多尺度建模、计算和动力学分析是心律失常领域进一步发展的关键.本文旨在对这个课题做一个阶段性的回顾,扼要介绍心肌多尺度建模的基本理念和方法,并以尺度为脉络,介绍近年来在心律失常机制理论方面取得的若干重要成果.现有成果表明,非线性动力学、斑图动力学和统计物理对心律失常的基本认识和理论的发展有重要的意义.未来的研究应在拓展模型尺度(向更微观和宏观方向拓展模型),解决心律失常基础动力学问题(如非均匀系统的稳定性、斑图的相变理论),以及解决更复杂而基本的生理医学问题(如心率变异、人群心律失常发生概率风险的评估)等方面继续深入探索.
    Biological systems are complex systems that are regulated at multiple scales, with dynamics ranging from random molecular fluctuations to spatiotemporal wave dynamics and periodic oscillations. To understand the underlying mechanisms and link the dynamics at the molecular scale to those at the tissue and organ scales, research approaches integrating computer modeling and simulation, nonlinear dynamics, and experimental and clinical data have been widely used. In this article, we review how these approaches have been used to investigate the multiscale cardiac excitation dynamics, particularly the genesis of cardiac arrhythmias that can lead to sudden death. The specific topics covered in this review are: i) Mechanisms of formation of intracellular calcium sparks (the bottom panel in Fig.12) and waves (the second lowest panel in Fig.12) in the subcellular scale, which can be described by stochastic transitions between the two stable states of a bistable system and second order phase transition, respectively; ii) Mechanisms of triggered activities in the cellular scale (the second panel from the top of Fig.12) resulting from transmembrane voltage and intracellular calcium cycling and their coupling, some of which can be well described by the bifurcation theories of the nonlinear dynamical system; iii) Mechanisms for the genesis of arrhythmias at the tissue scale (the top panel in Fig.12) induced by the triggered activities, which can be understood as dynamical instability-induced pattern formation in heterogeneous excitable media; and iv) Manifestations of the excitation dynamics and transitions in the whole heart (organ scale) in electrocardiogram to bridge the spatiotemporal wave dynamics to clinical observations. These results indicate that nonlinear dynamics, pattern formation and statistical physics are the fundamental components for establishing a theoretical framework for understanding cardiac arrhythmias.Fig.12. Multiscale excitation dynamics in the heart. From bottom up the results of different scales are illustrated. The bottom panel (CRU scale) illustrates the line scan images of calcium sparks in the single calcium release unit (upper trace, the color indicates the intensity of the spark), and the trace of the total calcium intensity (lower trace). Calcium spark can be described by the Kramer’s transition between the two states of a bistable system (as shown in Fig.4). The second lowest panel (subcellular scale) is a line scan image of calcium waves inside a cell. The formation of a calcium wave is a self-organization process that involves the second-order phase transition, as indicated by the power-law distribution of calcium spark cluster size (see Fig.5). The second top panel (cellular scale) indicates triggered activities (including early after depolarizations and delayed afterdepolarizations) induced by the coupling between calcium wave and voltage in a single cell, some of which can be well described by the bifurcation theories of the nonlinear dynamical system (as discussed in Fig.6). The top panel (tissue and organ scale) shows spontaneous genesis of reentry (spiral wave) via a dynamical instability in whole heart, which will be manifestated as arrhythmias in the electrocardiogram (see Figs.10 and 11).
  • [1]

    Barber M, Nguyen LS, Wassermann J, Spano J-P, Funck-Brentano C, Salem J-E 2019 Cardiovasc. Res. 115 878

    [2]

    Yoshimoto A, Morikawa S, Kato E, Takeuchi H, Ikegaya Y 2024 Science 384(6702) 1361

    [3]

    Trayanova NA, Winslow R 2011 Circ. Res. 108(1) 113

    [4]

    Qu Z, Hu G, Garfinkel A, Weiss JN 2014 Phys. Rep. 543 61

    [5]

    Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N 2014 Am. Heart J. 167(3) 292

    [6]

    Gintant G, Sager PT 2016 Nature Reviews Drug Discovery 15 457

    [7]

    Hodgkin A, Huxley A 1952 J. Physiol. 117 500

    [8]

    Noble D 1962 J. Physiol. 160 317

    [9]

    Beeler GW, Reuter H 1977 J. Physiol. 268 177

    [10]

    Luo CH, Rudy Y 1991 Circ. Res. 68 1501

    [11]

    Zhang H, Holden AV, Kodama I, Honjo H, Lei M, Varghese T, Boyett MR 2000 Am. J. Physiol. Heart Circ. Physiol. 279 397

    [12]

    Luo CH, Rudy Y 1994 Circ. Res. 74 1071

    [13]

    ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV 2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573

    [14]

    O’Hara T, Virag L, Varro A, Rudy Y 2011 PLoS Comput. Biol. 7(5) e1002061

    [15]

    Grandi E, Pasqualini FS, Bers DM 2010 J. Mol. Cell Cardiol. 48(1) 112

    [16]

    Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie LH, Yang MJ, Chen PS, Restrepo JG, Karma A, Garfinkel A, Qu Z, Weiss JN 2008 Biophys. J. 94 392

    [17]

    Bartolucci C, Forouzandehmehr M, Severi S, Paci M 2022 Front. Physiol. 13 906146

    [18]

    Xia L, Huo M, Wei Q, Liu F, Crozier S 2005 Phys. Med. Biol. 50(8) 1901

    [19]

    Lu L, Zheng Q, Xia L, Zhu X 2019 Comput. Biol. Med. 108 234

    [20]

    Balakina-Vikulova NA, Panfilov A, Solovyova O, Katsnelson LB 2020 J. Physiol. Sci. 70(1) 12

    [21]

    Restrepo JG, Weiss JN, Karma A 2008 Biophys. J. 95 3767

    [22]

    Nivala M, de Lange E, Rovetti R, Qu Z 2012 Front. Physiol. 3 114

    [23]

    Wilson D, Ermentrout B, Nemec J, Salama G 2017 Chaos 27 093940

    [24]

    Winfree AT 1983 Sci. Am. 248 144

    [25]

    Winfree AT 1987 When time breaks down (Princeton: Princeton University Press)

    [26]

    Glass L 1996 Physics Today 49 40

    [27]

    Keener J, Sneyd J 2009 Mathematical Physiology (Second Edition) (Springer)

    [28]

    Nolasco JB, Dahlen RW 1968 J. Appl. Physiol. 25 191

    [29]

    Weiss JN, Karma A, Shiferaw Y, Chen PS, Garfinkel A, Qu Z 2006 Circ. Res. 98 1244

    [30]

    Qu Z, Weiss JN 2023 Circ. Res. 132 127

    [31]

    Gilmour Jr R 2003 Drug Discov. Today 8 162

    [32]

    Karma A 2013 Annu. Rev. Condens. Matter Phys. 4 313

    [33]

    Panfilov AV, Dierckx H, Volpert V 2019 Physica D 399 1

    [34]

    Qu Z, Weiss JN 2015 Annu. Rev. Physiol. 77(1) 29

    [35]

    Lakatta EG, Maltsev VA, Vinogradova TM 2010 Circ Res 106 659

    [36]

    Weiss JN, Qu Z 2020 JACC: Clinical Electrophysiology 6 1841

    [37]

    Manoj P, Kim JA, Kim S, Li T, Sewani M, Chelu MG, Li N 2023 Am. J. Physiol. Heart Circ. Physiol. 324 H259

    [38]

    Torrente AG, Zhang R, Zaini A, Giani JF, Kang J, Lamp ST, Philipson KD, Goldbaber JI 2015 PNAS 112 9769

    [39]

    Krogh-Madsen T, Abbott GW, Christini DJ 2012 PLoS Comput Biol 8 e1002390

    [40]

    Trayanova NA 2014 Circ. Res. 114 1516

    [41]

    Liu W, Kim TY, Huang X, Liu MB, Koren G, Choi BR, Qu Z 2018 J. Physiol. 596(8) 1341

    [42]

    Huang X, Kim TY, Koren G, Choi BR, Qu Z 2016 Am. J. Physiol. 311 H147

    [43]

    Zhang Z, Liu MB, Huang X, Song Z, Qu Z 2021 Biophys. J. 120 352

    [44]

    Zhang Z, Qu Z 2021 Phys. Rev. E 103 062406

    [45]

    Zhang Z, Chen P-S, Weiss JN, Qu Z 2022 Circ Arrhythm Electrophysiol 15 e010365

    [46]

    Wilson LD, Jeyaraj D, Wan X, Hoeker GS, Said TM, Gittinger M, Laurita KR, Rosenbaum DS 2009 Heart Rhythm 6 251

    [47]

    Baher AA, Uy M, Xie F, Garfinkel A, Qu Z, Weiss JN 2011 Heart Rhythm 8 599

    [48]

    Bak T, Sato D 2024 Heart Rhythm (in press)

    [49]

    Xu A, Guevara MR 1998 Chaos 8 157

    [50]

    Xie F, Qu Z, Garfinkel A, Weiss JN 2001 Am. J. Physiol. Heart Circ. Physiol. 280 H1667

    [51]

    Vandersickel N, de Boer TP, Vos MA, Panfilov AV 2016 J. Physiol. 594 6865

    [52]

    Qu Z, Garfinkel A, Weiss JN, Nivala M 2011 Prog. Biophys. Mol. Biol. 107 21

    [53]

    Laver DR, Kong CHT, Imtiaz MS, Cannell MB 2013 J. Mol. Cell. Cardiol. 54 98

    [54]

    Joshi H, Singharoy AB, Sereda YV, Cheluvaraja S, Ortoleva PJ 2011 Prog. Biophys. Mol. Biol. 107 200

    [55]

    Bers DM 2008 Annu. Rev. Physiol. 70 23.

    [56]

    Fabiato A 1983 Am. J. Physiol. 245 C1

    [57]

    Cheng H, Lederer WJ, Cannell MB 1993 Science 262 740

    [58]

    Zima AV, Picht E, Bers DM, Blatter LA 2008 Biophys. J. 94 1867

    [59]

    Fowler ED, Wang N, Hezzell M, Chanoit G, Hancox JC, Cannell MB 2020 PNAS 117 2687

    [60]

    Qu Z, Yan D, Song Z 2022 Biomolecules 12 1686

    [61]

    Song Z, Karma A, Weiss JN, Qu Z 2016 PLoS Comput. Biol. 12(1) e1004671

    [62]

    Iaparov BI, Zahradnik I, Moskvin AS, Zahradnikova A 2021 J. Gen. Physiol. 153(4) e202012685

    [63]

    Dixon RE, Navedo MF, Binder MD, Santana LF 2022 Physiol. Rev. 102 1159

    [64]

    Gonzalez A, Kirsch WG, Shirokova N, Pizarro G, Brum G, Pessah IN, Stern MD, Cheng H, Rios E 2000 PNAS 97 4380

    [65]

    Hui CS, Besch HR Jr, Bidasee KR 2004 Biophys. J. 87 243

    [66]

    Sobie EA, Dilly KW, dos Santos Cruz J, Lederer WJ, Jafri MS 2002 Biophys. J. 83 59.

    [67]

    Hinch R 2004 Biophys. J. 86 1293

    [68]

    Stern MD,Rios E, Maltsev VA 2013 J. Gen. Physiol. 142 257

    [69]

    Xiao RP,Valdivia HH,Bogdanov K, Valdivia C, Lakatta EG, Cheng H 1997 J. Physiol. 500 343

    [70]

    Hu G 1994 Stochastic forces and nonlinear systems (Shanghai: Shanghai Scientific and Technology Education Publishing House) (in Chinese)[胡岗 1994 随机力与非线性系统(上海:上海科技教育出版社)]

    [71]

    Lukyanenko V, Gyorke S 1999 J. Physiol. 521(3) 575

    [72]

    Lipp P, Niggli E 1993 Biophys. J. 65 2272

    [73]

    Bovo E, Lipsius SL, Zima AV 2012 J. Physiol. 590 3291

    [74]

    ter Keurs HEDJ, Boyden PA 2007 Physiol. Rev. 87 457

    [75]

    Nivala M, Ko CY, Weiss JN, Qu Z 2012 Biophys. J. 102 2433

    [76]

    Krogh-Madsen T, Christini DJ 2012 Annu. Rev. Biomed. Eng. 14 179

    [77]

    Gao Z, Li T, Jiang H, He Jun 2023 Phys. Rev. E 107 024402

    [78]

    Hernandez-Hernandez G, Alvarez-Lacalle E, Shiferaw Y 2015 Phys. Rev. E 92 052715

    [79]

    Shiferaw Y 2016 Phys. Rev. E 94 032405

    [80]

    Xie Y, Yang Y, Galice S, Bers DM, Sato D 2019 Biophys. J. 116 530

    [81]

    Xie W, Brochet DXP, Wei S, Wang X, Cheng H 2010 J. Gen. Physiol. 136(2) 129

    [82]

    Chen X, Feng Y, Huo Y, Tan W 2018 Front. Physiol. 9 393

    [83]

    Cranefield PF 1977 Circ. Res. 41 415

    [84]

    Rosen MR, Moak JP, Damiano B 1984 Ann. N. Y. Acad. Sci. 427 84

    [85]

    Alexander C, Bishop MJ, Gilchrist RJ, Burton FL, Smith GL, Myles RC 2023 Cardiovasc. Res. 119 465

    [86]

    Tsuji Y, Yamazaki M, Shimojo M, Yanagisawa S, Inden Y, Murohara T 2024 Front. Cardiovasc. Med. 11 1363848

    [87]

    Yan GX, Wu Y, Liu T, Wang J, Marinchak RA, Kowey PR 2001 Circulation 103 2851

    [88]

    January CT, Chau V, Makielski JC 1991 European Heart Journal 12 {Supplement F) 4

    [89]

    January CT, Moscucci A 1992 Ann. N. Y. Acad. Sci. 644 23

    [90]

    Guo D, Zhao X, Wu Y, Liu T, Kowey PR, Yan GX 2007 J. Cardiovasc. Electrophysiol. 18 196

    [91]

    Koval O, Guan X, Wu Y, Joiner M, Gao Z, Chen B, Grumbach IM, Luczak ED, Colbran RJ, Song L 2010 PNAS 107 4996

    [92]

    Zhao Z, Xie Y, Wen H, Xiao D, Allen C, Fefelova N, Dun W, Boyden PA, Qu Z, Xie LH 2012 Cardiovasc. Res. 95 308

    [93]

    Tran D, Sato D, Yochelis A, Weiss JN, Garfinkel A, Qu Z 2009 Phys. Rev. Lett. 102 258103

    [94]

    Qu Z, Xie LH, Olcese R, Karagueuzian HS, Chen PS, Garfinkel A, Weiss JN 2013 Cardiovasc. Res. 99 6

    [95]

    Chang MG, Chang CY, de Lange E, Xu L, O’Rourke B, Karagueuzian HS, Tung L, Marban E, Garfinkel A, Weiss JN, Qu Z, Abraham MR 2012 Biophys. J. 102 2706

    [96]

    Xie Y, Izu LT, Bers DM, Sato D 2014 Biophys. J. 106(6) 1391

    [97]

    Kugler P 2016 PLoS ONE 11(3) e0151178

    [98]

    Kurata Y, Tsumoto K, Hayashi K, Hisatome I, Tanida M, Kuda Y 2017 Am. J. Physiol. Heart Circ. Physiol. 312(1) H106

    [99]

    Tsumoto K, Kurata Y, Furutani K, Kurachi Y 2017 Sci. Rep. 7 10771

    [100]

    Kim S, Sato D 2018 Front. Phys. 6 117

    [101]

    Huang X, Song Z, Qu Z 2018 PLoS Comput. Biol. 14(11) e1006382

    [102]

    Kimrey J, Vo T, Bertram R 2020 PLoS Comput. Biol. 16(11) e1008341

    [103]

    Chu Z, Yang D, Huang X 2020 Chaos 30 043105

    [104]

    Slepukhina E, Ryashko L, Kugler P 2020 Chaos, Solitons and Fractals 131 109515

    [105]

    Barrio R, Martinez MA, Pueyo E, Serrano S 2021 Chaos 31(7) 073137

    [106]

    Choi BR, Burton F, Salama G 2002 J. Physiol. 543 615

    [107]

    Zhao Z, Wen H, Fefelova N, Allen C, Baba A, Matsuda T, Xie LH 2012 Am. J. Physiol. Heart Circ. Physiol. 302 H1636

    [108]

    Wang R, Huang X, Qu Z 2024 PLoS Comput. Biol. 20(2) e1011930

    [109]

    Song Z, Ko CY, Nivala M, Weiss JN, Qu Z 2015 Biophys. J. 108 1908

    [110]

    Chen-Izu Y, Ward CW, Stark W, Banyasz T, Wehrens XHT 2007 Am. J. Physiol. Heart Circ. Physiol. 293 H2409

    [111]

    Hoeker GS, Katra RP, Wilson LD, Plummer BN, Laurita KR 2009 Am. J. Physiol. Heart Circ. Physiol. 297(4) H1235

    [112]

    Ross JL, Howlett SE 2009 Eur. J. Pharmacol. 602 364

    [113]

    Bai Y, Jones PP, Guo J, Zhong X, Clark RB, Zhou Q, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Semeniuk L, Guo A, Song LS, Duff HJ, Chen SR 2013 Circ. Res. 113(5) 517

    [114]

    Lou Q, Belevych AE, Radwanski PB, Liu B, Kalyanasundaram A, Knollmann BC, Fedorov VV, Gyorke S 2015 J. Physiol. 593(6) 1443

    [115]

    Song Z, Qu Z, Karma A 2017 PNAS E270

    [116]

    Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen PS 1999 Circulation 99 2819

    [117]

    Samie FH, Mandapati R, Gray RA, Watanabe Y, Zuur C, Beaumont J, Jalife J 2000 Circ. Res. 86 684

    [118]

    Wang Y, Li Q, Tao B, Angelini M, Ramadoss S, Sun B, Wang P, Krokhaleva Y, Ma F, Gu Y, Espinoza A, Yamauchi K, Pellegrini M, Novitch B, Olcese R, Qu Z, Song Z, Deb A 2023 Science 381 1480

    [119]

    Greene D, Kaboudian A, Wasserstrom JA, Fenton FH, Shiferaw Y 2022 Biophys. J. 121 383.

    [120]

    Field RJ, Burger M 1985 Oscillations and traveling waves in chemical systems (New York: Wiley)

    [121]

    Ouyang Q 2010 An introductory book of nonlinear science and pattern dynamics (Beijing: Beijing University Press) (in Chinese)[欧阳颀 2010 非线性科学与斑图动力学导论(北京:北京大学出版社)]

    [122]

    Fenton FH, Cherry EM, Hastings HM, Evans SJ 2002 Chaos 12(3) 852

    [123]

    Barkely D 1992 Phys. Rev. Lett. 68(13) 2090

    [124]

    Bar M. Or-Guil M 1999 Phys. Rev. Lett. 82(6) 1160 1999

    [125]

    Xie Y, Hu G, Sato D, Weiss JN, Garfinkel A, Qu Z 2007 Phys. Rev. Lett. 99 118101

    [126]

    Alonso S, Panfilov AV 2008 Phys. Rev. Lett. 100 218101

    [127]

    Zhang H, Cao Z, Wu NJ, Ying HP, Hu G 2005 Phys. Rev. Lett. 94 188301

    [128]

    Tang G, Deng M, Hu B, Hu G 2008 Phys. Rev. E 77 046217

    [129]

    Zhang Z, Zhang Y, Qu Z 2023 Phys. Rev. E 108 064405

    [130]

    Wang X, Gao J, Gu C, Wu D, Liu X, Shen C 2023 Phys. Rev. E 108 044205

    [131]

    Pravdin SF, Epanchintsev TI, Panfilov AV 2020 Sci. Rep. 10 20632

    [132]

    Luo J, Li TC, Zhang H 2020 Phys. Rev. E 101 032205

    [133]

    Majumder R, Zykov VS, Bodenschatz E 2022 Phys. Rev. Applied 17 064033

    [134]

    Das TS, Wilson D 2022 Phys. Rev. E 105 064213

    [135]

    Xia YX, Zhi XP, Li TC, Pan JT, Panfilov AV, Zhang H 2022 Phys. Rev. E 106 024405

    [136]

    Li QH, Xia YX, Xu SX, Song Z, Pan JT, Panfilov AV, Zhang H 2022 Phys. Rev. E 105 044210

    [137]

    Xia YX, Xie LH, He YJ, Pan JY, Panfilov AV, Zhang H 2023 Phys. Rev. E 108 064406

    [138]

    Li TC, Pan DB, Zhou K, Jiang R, Jiang C, Zheng B, Zhang H 2018 Phys. Rev. E 98 062405

    [139]

    He YJ, Li QH, Zhou K, Jiang R, Jiang C, Pan JT, Zheng D, Zheng B, Zhang H 2021 Phys. Rev. E 104 014213

    [140]

    He YJ, Xia YX, Mei JT, Zhou J, Jiang C, Pan JT, Zheng D, Zheng B, Zhang H 2023 Phys. Rev. E 107 014217

    [141]

    Li TC, Li BW, Zheng B, Zhang H, Panfilov AV, Dierckx H 2019 New J. Phys. 21 043012

    [142]

    Gotoh M, Uchida T, Mandel WJ, Fishbein MC, Chen PS, Karagueuzian HS 1997 Circulation 95 2141

    [143]

    Roth B 1998 J. Theoret. Biol. 190 389

    [144]

    Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS 1999 Circulation 99 1385

    [145]

    Qu Z, Garfinkel A, Chen PS, Weiss JN 2000 Circulation 102 1664

    [146]

    You T, Xie Y, Luo C, Zhang K, Zhang H 2023 Physiol. Rep. 11 e15619

    [147]

    Sato D, Xie LH, Sovari AA, Tran DX, Morita N, Xie F, Karagueuzian HS, Garfinkel A, Weiss JN, Qu Z 2009 PNAS 106 2983

    [148]

    Xie Y, Sato D, Garfinkel A, Qu Z, Weiss JN 2010 Biophys. J. 99 1408

    [149]

    Maruyama M, Lin SF, Xie Y, Chua SK, Joung B, Han S, Shinohara T, Shen MJ, Qu Z, Weiss JN, Chen PS 2011 Circ. Arrhythm. Electrophysiol. 4 103

    [150]

    Liu GX, Choi BR, Ziv O, Li W, de Lange E, Qu Z, Koren G 2012 J. Physiol. 590 1171

    [151]

    Zhang Z, Qu Z 2021 Physiol. Rep.9 e14883.

    [152]

    Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y 2023 Computer methods and programs in biomedicine 40 107722

    [153]

    Teplenin AS, Dierckx H, de Vries AAF, Pijnappels DA, Panfilov AV 2018 Phys. Rev. X 8 021077

    [154]

    Heitmann S, Shpak A, Vandenberg JI, Hill AP 2021 PLoS Comput. Biol. 17(2) e1008683

    [155]

    Lin J, Qu Z, Huang X 2023 Phys. Rev. E 107 034402

    [156]

    Neira V, Enriquez A, Simpson C, Baranchuk A 2019 J. Cardiovasc. Electrophysiol. 30 3068

    [157]

    Liu MB, Vandersickel N, Panfilov AV, Qu Z 2019 Circ. Arrhythm. Electrophysiol. 12 e007571

    [158]

    Qu Z, Liu MB, Olcese R, Karagueuzian HS, Garfinkel A, Chen PS, Weiss JN 2023 Heart Rhythm 19(8) 1369

    [159]

    Liu MB, de Lange E, Garfinkel A, Weiss JN, Qu Z 2015 Heart Rhythm 12 2115

    [160]

    Sadrieh A, Domanski L, Pitt-Francis J, Mann SA, Hodkinson EC, Ng CA, Perry MD, Taylor JA, Gavaghan D, Subbiah RN, Vandenberg JI, Hill AP 2014 Nat. Commun. 5 5069

    [161]

    Cui X, Rovetti RJ, Yang L, Garfinkel A, Weiss JN, Qu Z 2009 Phys. Rev. Lett. 103 044102

    [162]

    Fox JJ, Bodenschatz E, Gilmour Jr. RF 2002 Phys. Rev. Lett. 89 138101

    [163]

    Huang X, Qian Y, Zhang X, Hu G 2010 Phys. Rev. E 81 051903

    [164]

    Song Z, Liu MB, Qu Z 2018 J. Mol. Cellular Cardiol. 114 288

    [165]

    Song Z, Xie LH, Weiss JN, Qu Z 2019 Biophys. J. 117(12) 2349

    [166]

    Pandey V, Xie LH, Qu Z, Song Z 2021 PLoS Comput. Biol. 17(1) e1008624

    [167]

    Oren RV, Clancy CE 2010 PLoS Comput. Biol. 6(12) e1001041

    [168]

    Huang X, Mi Y, Qian Y, Hu G 2011 Phys. Rev. E 83 061917

    [169]

    Maltsev AV, Yaniv Y, Maltsev AV, Stern MD, Lakatta EG 2014 J. Pharmacol. Sci. 125 6

    [170]

    Huang X, Cui X 2015 PLoS ONE 10(3) e0118623

    [171]

    Zhao N, Li Q, Zhang K, Wang K, He R, Yuan Y, H. Zhang 2020 PLoS Comput. Biol. 16(7) e1008048

    [172]

    Trayanova NA, Popescu DM, Shade JK 2021 Circ. Res. 128(4) 544

    [173]

    Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng CK, Stanley HE 2002 PNAS 99 2466

    [174]

    Kobayashi M, Musha T 1982 IEEE transactions on biomedical engineering, BME-29(6) 456

  • [1] 李惟嘉, 申晓红, 李亚安. 一种无偏差的多通道多尺度样本熵算法. 物理学报, doi: 10.7498/aps.73.20231133
    [2] 邓凌云, 谢增辉, 王路. 径向电脉冲对钉扎螺旋波的脱钉研究. 物理学报, doi: 10.7498/aps.72.20221784
    [3] 胡恒儒, 龚志强, 王健, 乔盼节, 刘莉, 封国林. ENSO气温关联网络结构特征差异及成因分析. 物理学报, doi: 10.7498/aps.70.20210825
    [4] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, doi: 10.7498/aps.69.20191934
    [5] 潘飞, 黎维新, 王小艳, 唐国宁. 用低通滤波方法终止心脏组织中的螺旋波和时空混沌. 物理学报, doi: 10.7498/aps.64.218202
    [6] 于洁, 郭霞生, 屠娟, 章东. 超声造影剂微泡非线性动力学响应的机理及相关应用. 物理学报, doi: 10.7498/aps.64.094306
    [7] 鲁金蕾, 王晓晨, 容晓晖, 刘雳宇. 三维微纳米制造技术在癌症生物物理研究中的应用. 物理学报, doi: 10.7498/aps.64.058705
    [8] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究. 物理学报, doi: 10.7498/aps.63.026201
    [9] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性. 物理学报, doi: 10.7498/aps.62.038403
    [10] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究. 物理学报, doi: 10.7498/aps.61.234203
    [11] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波. 物理学报, doi: 10.7498/aps.61.120509
    [12] 王从庆, 吴鹏飞, 周鑫. 基于最小关节力矩优化的自由浮动空间刚柔耦合机械臂混沌动力学建模与控制. 物理学报, doi: 10.7498/aps.61.230503
    [13] 戴瑜, 韦海明, 唐国宁. 非均匀激发介质中螺旋波的演化. 物理学报, doi: 10.7498/aps.59.5979
    [14] 唐冬妮, 张旭, 任卫, 唐国宁. 可激发介质中环形异质介质导致自维持靶波. 物理学报, doi: 10.7498/aps.59.5313
    [15] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换. 物理学报, doi: 10.7498/aps.58.2467
    [16] 戴瑜, 唐国宁. 离散可激发介质激发性降低的几种起因. 物理学报, doi: 10.7498/aps.58.1491
    [17] 牛生晓, 张明江, 安 义, 贺虎成, 李静霞, 王云才. 外光注入半导体激光器实现重复速率可调全光时钟分频. 物理学报, doi: 10.7498/aps.57.6998
    [18] 李新霞, 唐 翌. 阻尼作用下一维体系热传导性质的研究. 物理学报, doi: 10.7498/aps.55.6556
    [19] 钱 郁, 宋宣玉, 时 伟, 陈光旨, 薛 郁. 可激发介质湍流的耦合同步及控制. 物理学报, doi: 10.7498/aps.55.4420
    [20] 姜可宇, 蔡志明. 变尺度概率净化法的优化. 物理学报, doi: 10.7498/aps.54.4596
计量
  • 文章访问数:  105
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-20

/

返回文章
返回