搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电压瞬态技术:实时分析膜界面动态过程的新手段

窦玉江 李文文 魏裕双 杨恺 元冰

引用本文:
Citation:

光电压瞬态技术:实时分析膜界面动态过程的新手段

窦玉江, 李文文, 魏裕双, 杨恺, 元冰

Photovoltage transient technique: an alternative method for real-time analysis of membrane interface dynamic processes

Dou Yu-Jiang, Li Wen-Wen, Wei Yu-Shuang, Yang Kai, Yuan Bing
PDF
导出引用
  • 活性分子与细胞膜之间的相互作用在许多基本的生物过程中扮演着至关重要的角色,然而如何实现对此界面动力学过程的原位、实时、无标记且无侵入监测仍是生物物理研究领域所面临的一大挑战我们与合作者开发的光电压瞬态技术,为解决这一问题提供了一种新途径 该技术利用硅片光电响应生成电荷,并将磷脂膜的充放电过程记录为电压瞬态脉冲、建立了该充放电过程与界面瞬时结构和性质之间的关联性因此,通过对随时间演化的电压脉冲进行分析,可以揭示活性分子作用下膜结构实时动态变化情况,尤其是不同作用状态之间转换的时间信息,可作为传统技术的有益补充同时,该技术设备搭建成本低廉,操作方便,无需复杂的数据处理过程.本综述概述了光电压瞬态技术的工作原理、设备搭建以及数据处理方法,并以经典细胞膜模型—磷脂双层膜为例,总结了该技术在探索磷脂膜水合特性及其与活性分子(如表面活性剂、聚合物、多肽和纳米颗粒)相互作用机制方面取得的最新进展.最后就该技术优缺点进行讨论并展望未来发展前景.
    The dynamic interactions between active molecules and the cell membrane play a crucial role in various fundamental biological processes. In recent years, the emergence of the photovoltage transient technique has provided an insitu, real-time, and non-invasive approach to studying dynamic processes at the membrane interface. This technique utilizes silicon wafers' photoelectric response to generate charges and records voltage transient pulses during the charging and discharging process of phospholipid membranes. These pulses directly reflect the instantaneous structure and properties of the membrane. By analyzing the temporal evolution of voltage pulses, the dynamic changes in membrane structure induced by molecular actions can be elucidated. In particular, this technique offers valuable insights into the timing of transitions between different functional states. This review provides a comprehensive overview of the working principle, equipment setup, and data processing methods employed in photovoltage transient analysis. Furthermore, using supported phospholipid bilayers as model cell membranes, it highlights recent advancements made with this technique in investigating the mechanisms underlying membrane interactions of active molecules such as surfactants, polymers, peptides, and nanoparticles. Finally, an assessment of its strengths and limitations is provided along with future prospects for its development.
    The photovoltage transient technique was initially employed to analyze the charging and discharging curves, as well as the hydration process, of single- and multi-layered membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospholipids. Previously, X-ray diffraction (XRD) and quartz crystal microbalance with dissipation (QCM-D) technology were commonly utilized for real-time monitoring of the swelling process in phospholipid membranes, providing information on changes in mass and thickness of Z-direction layers. In contrast, the photovoltage transient technique offers additional insights into the kinetics of the swelling process and timing of transitions between different stages. This study demonstrated the efficacy of the photovoltage transient technique in real-time monitoring of membrane interface processes; specifically, it quantitatively measured the characteristic τ value of DOPC phospholipid membrane, thereby enabling further development of quantitative analysis methods for this technique. Then, the photovoltage transient technique, in conjunction with giant unilamellar vesicle (GUV) leakage assays, atomic force microscopy (AFM) and QCM-D, was employed to monitor the structural perturbation of surfactants (TTAB) and polymers (Brij35 and PVPk30) on the membranes. Specifically, Brij35 primarily undergoes an adsorption-accumulation-penetration process; whereas PVPk30 exhibits a dynamic equilibrium between molecular adsorption-desorption and/or membrane permeation-healing competing mechanisms. This disparity in membrane action processes elucidates the discrepancy observed in their cytotoxicity during live cell experiments. The ability of photovoltage transient technology to investigate the entire membrane as a research subject along with its high sensitivity enables it to capture fluctuations in data points that reflect the coexistence of competitive mechanisms. Furthermore, photovoltage monitoring revealed the occurrence of peptide-induced membrane permeabilization. The distinct mechanism of action on the membrane between melittin (as a representative antimicrobial peptide) and TAT (a typical cell penetrating peptide) was elucidated. Lastly, the conductive carbon dots (CDs) induced phenomena of membrane overcharging and overdischarging, potentially attributed to charge transfer between the silicon substrate and the embedded conductive CDs.
  • [1]

    Garcia-Lopez V, Chen F, Nilewski L G, Duret G, Aliyan A, Kolomeisky A B, Robinson J T, Wang G, Pal R, Tour J M 2017 Nature 548 567

    [2]

    Dou Y, Li J, Yuan B, Yang K 2014 Appl. Surf. Sci. 296 95

    [3]

    De Poli M, Zawodny W, Quinonero O, Lorch M, Webb S J, Clayden J 2016 Science 352 575

    [4]

    Dawson K A, Salvati A, Lynch I 2009 Nat. Nanotechn. 4 84

    [5]

    Roiter Y, Ornatska M, Rammohan A R, Balakrishnan J, Heine D R, Minko S 2008 Nano Lett. 8 941

    [6]

    Alexeev A, Uspal W E, Balazs A C 2008 ACS Nano 2 1117

    [7]

    Michel J P, Wang Y X, Kiesel I, Gerelli Y, Rosilio V 2017 Langmuir 33 11028

    [8]

    Xia H, Zhao Y 2020 Artif Cells Nanomed. Biotechnol. 48 197

    [9]

    Shadmani P, Mehrafrooz B, Montazeri A, Naghdabadi R 2020 J. Phys. Condens. Matter 32 115101

    [10]

    Last N B, Miranker A D 2013 Proc. Natl. Acad. Sci. U S A 110 6382

    [11]

    Weissmann G, Hirschhorn R, Krakauer K 1969 Biochem. Pharmacol. 18 1771

    [12]

    Barbasz A, Ocwieja M, Roman M 2017 Colloids Surf. B Biointerfaces 156 397

    [13]

    Vijayan V, Uthaman S, Park I K 2018 Polymers (Basel) 10 983

    [14]

    Han M L, Velkov T, Zhu Y, Roberts K D, Le Brun A P, Chow S H, Gutu A D, Moskowitz S M, Shen H H, Li J 2018 ACS Chem. Biol. 13 121

    [15]

    Khondker A, Dhaliwal A K, Saem S, Mahmood A, Fradin C, Moran-Mirabal J, Rheinstadter M C 2019 Commun. Biol. 2 67

    [16]

    Ista L K, Yu Q, Parthasarathy A, Schanze K S, Lopez G P 2016 Biointerphases 11 019003

    [17]

    Xu Y, Lin J, Cui T, Srinivas S, Feng Y 2018 J. Biol. Chem. 293 4350

    [18]

    Keiderling T A, Lakhani A 2018 Chirality 30 238

    [19]

    Eun H J, Min A, Jeon C W, Yoo I, Heo J, Kim N J 2020 J. Phys. Chem. Lett. 11 4367

    [20]

    Schwaighofer A, Alcaraz M R, Araman C, Goicoechea H, Lendl B 2016 Sci. Rep. 6 3355610

    [21]

    Hou S G, Liang L, Deng S H, Chen J F, Huang Q, Cheng Y, Fan C H 2014 Sci. China-Chem. 57 100

    [22]

    Li Y, Qian Z, Ma L, Hu S, Nong D, Xu C, Ye F, Lu Y, Wei G, Li M 2016 Nat Commun 7 12906

    [23]

    Ma D, Hou W, Yang C, Hu S, Han W, Lu Y 2021 Biophys. Rep. 7 490

    [24]

    Xu C, Ma W, Wang K, He K, Chen Z, Liu J, Yang K, Yuan B 2020 J Phys Chem Lett 11 4834

    [25]

    Wu J, Xu C, Ye Z, Chen H, Wang Y, Yang K, Yuan B 2023 Small e2301713

    [26]

    Inoue O, Hasumi K 2019 J. Micro/Nanolith. MEM. 18 021206

    [27]

    Zhang B, Ma X L 2019 J. Mater. Sci. Technol. 35 1455

    [28]

    Eswara S, Pshenova A, Yedra L, Hoang Q H, Lovric J, Philipp P, Wirtz T 2019 Appl. Phys. Rev. 6 021312

    [29]

    Kosari A, Zandbergen H, Tichelaar F, Visser P, Terryn H, Mol A 2019 Corrosion 76 4

    [30]

    Li S, Chang Y, Wang Y, Xu Q, Ge B 2020 Micron. 130 102813

    [31]

    Chen P Y Y, H.; Zhai, X. B.; Huang, Z. H.; Ma, G. H.; Wei, W.; Yan, L. T. 2019 Sci. Adv. 5 eaaw3192

    [32]

    Xiao S F, Lu X M, Gou L, Li J L, Ma Y Q, Liu J J, Yang K, Yuan B 2019 Carbon 149 248

    [33]

    Suk H J, Boyden E S, van Welie I 2019 J. Neurosci. Methods 326 108357

    [34]

    de Pauli M, Gomes A M C, Cavalcante R L, Serpa R B, Reis C P S, Reis F T, Sartorelli M L 2019 Electrochimica Acta 320 134366

    [35]

    Marchioro A, Bischoff M, Lutgebaucks C, Biriukov D, Predota M, Roke S 2019 J. Phys. Chem. C 123 20393

    [36]

    Rao Y, Song D H, Turro N J, Eisenthal K B 2008 J. Phys. Chem. B 112 13572

    [37]

    Eisenthal K B 2006 Chem. Rev. 106 1462

    [38]

    Dou Y, Li W, Xia Y, Chen Z, Wu Z, Ge Y, Lin Z, Zhang M, Yang K, Yuan B, Kang Z 2020 ACS Appl. Bio Mater. 4 620

    [39]

    Xia Y, Sun S, Zhang Z, Ma W, Dou Y, Bao M, Yang K, Yuan B, Kang Z 2022 Phys. Chem. Chem. Phys. 24 5360

    [40]

    Ge Y, Liu J, Dou Y, Chen Z, Li Z, Yang K, Yuan B, Kang Z 2022 Colloids Surf. B Biointerfaces 209 112161

    [41]

    Yuan B, Liu J J, Deng Z X, Wei L, Li W W, Dou Y J, Chen Z L, Zhang C, Xia Y, Wang J, Zhang M L, Yang K, Ma Y Q, Kang Z H 2021 NPG Asia Mater. 13 18

    [42]

    Ma W, Sun S, Li W, Zhang Z, Lin Z, Xia Y, Yuan B, Yang K 2020 Langmuir 36 7190

    [43]

    Wei L, Tu W, Xu Y, Xu C, Dou Y, Ge Y, Sun S, Wei Y, Yang K, Yuan B 2024 ACS Nano 18 18650

    [44]

    Sun S, Xia Y, Liu J, Dou Y, Yang K, Yuan B, Kang Z 2022 J. Colloid Interface Sci. 609 707

    [45]

    Li W, Ma Y, Ou L, Xu C, Wei Y, Yang K, Yuan B 2024 J. Hazard. Mater. 465 133382

    [46]

    Wei Y, Chen H, Li Y, He K, Yang K, Pang H 2022 ACS Nano 16 5885

    [47]

    Ou L, Chen H, Yuan B, Yang K 2022 ACS Nano 16 18090

  • [1] 谭金鹏, 张婉婷, 徐成, 卢雪梅, 朱文圣, 杨恺, 元冰. 基于无监督学习方法的细胞膜内单分子扩散运动分析: 胆固醇对模型膜和活细胞膜流动性的不同影响. 物理学报, doi: 10.7498/aps.73.20240915
    [2] 罗杨, 陈茂林, 苏冬冬, 许诺, 王忠晶, 韩志聪, 赵豪. 外磁场作用下的磁等离子体动力学过程仿真. 物理学报, doi: 10.7498/aps.71.20211383
    [3] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波. 红外及太赫兹辐照下细胞膜生物效应的研究进展. 物理学报, doi: 10.7498/aps.71.20212030
    [4] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波. 红外及太赫兹辐照下细胞膜生物效应的研究进展. 物理学报, doi: 10.7498/aps.70.20212030
    [5] 王康, 徐成, 吴晋锋, 杨恺, 元冰. 蜂毒肽与单组分脂膜相互作用的单分子研究. 物理学报, doi: 10.7498/aps.70.20210477
    [6] 徐成, 林召, 杨恺, 元冰. 蜂毒肽与二元脂膜相互作用过程的单分子运动行为. 物理学报, doi: 10.7498/aps.69.20200166
    [7] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究. 物理学报, doi: 10.7498/aps.67.20181334
    [8] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, doi: 10.7498/aps.66.106801
    [9] 王颖泽, 宋新南. 基于热质理论的广义热弹性动力学模型. 物理学报, doi: 10.7498/aps.61.234601
    [10] 彭勇刚, 郑雨军. 双层生物膜的动力学性质. 物理学报, doi: 10.7498/aps.60.088701
    [11] 胡小颖, 周雅君. 光学势在(e, 2e)反应动力学过程的作用. 物理学报, doi: 10.7498/aps.59.2423
    [12] 张春兵, 邱媛媛, 郗晓宇, 章东. 超声增强脂质体与细胞相互作用的研究. 物理学报, doi: 10.7498/aps.58.3996
    [13] 孙怡雯, 屈军乐, 赵羚伶, 许改霞, 丁志华, 牛憨笨. 眼底视网膜色素上皮层细胞脂褐素及氧化黑色素自体荧光寿命成像研究. 物理学报, doi: 10.7498/aps.57.772
    [14] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程. 物理学报, doi: 10.7498/aps.56.5314
    [15] 宁 成, 丁 宁, 刘 全, 杨震华. 双层钨丝阵的Z箍缩动力学过程研究. 物理学报, doi: 10.7498/aps.55.3488
    [16] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, doi: 10.7498/aps.54.3200
    [17] 苍宇, 王薇, 张杰. 对超短脉冲激光与固体密度等离子体相互作用动力学过程的研究. 物理学报, doi: 10.7498/aps.50.1742
    [18] 宋同强, 冯健, 王文正, 许敬之. 双原子与单模腔场Raman相互作用过程中原子与场的动力学特性. 物理学报, doi: 10.7498/aps.44.1056
    [19] 李淳飞, 王玉晓, 国凤云, 王瑞波, 张雷. C60介质反饱和吸收动力学. 物理学报, doi: 10.7498/aps.42.1236
    [20] 汪卫华, 白海洋, 张云, 陈红, 王文魁. Ni-Si多层膜中固态非晶化反应的热力学与动力学过程. 物理学报, doi: 10.7498/aps.42.1499
计量
  • 文章访问数:  69
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-08

/

返回文章
返回