-
全固态被动调Q激光器的非线性动力学行为是影响其输出特性的关键因素.本文通过数值模拟研究了泵浦调制下全固态被动调QNd:YAG/Cr:YAG激光器的非线性动力学行为,讨论了关键调制参量对调Q激光非线性动力学及其输出特性的影响.仿真结果表明,在特定的调制频率、调制幅度以及未调制泵浦速率下,调Q激光可以表现出单周期态、倍周期态、多周期态以及混沌态.通过分析调Q激光脉冲峰值随调制频率、调制幅度以及未调制泵浦速率变化的分岔图,发现脉冲峰值主要经倍周期和准周期演化路径进入混沌.此外,脉冲频率(即相邻脉冲时间间隔的倒数)进入混沌的演化路径与脉冲峰值的演化路径一致,但脉冲频率强度变化趋势与脉冲峰值强度变化趋势相反.研究结果理论上揭示了泵浦调制关键参量对激光器的非线性动力学行为及其输出特性具有显著影响,并为进一步实验深入探究其演化机制提供了重要的指导.
-
关键词:
- 泵浦调制 /
- 全固态被动调Q激光器 /
- Nd:YAG/Cr:YAG /
- 非线性动力学
All-solid-state passively Q-switched lasers can exhibit nonlinear behaviors such as period-doubling, injection locking, and chaos under specific conditions, offering new applications in fields like secure communication and random number generation. As a result, the nonlinear dynamics of laser systems has become increasingly important. Pump modulation is a typical method for controlling the nonlinear dynamical states of solid-state lasers. This study investigates the nonlinear dynamical characteristics of an all-solid-state passively Q-switched Nd:YAG/Cr:YAG laser under pump modulation by solving the four-level rate equation system using the Runge-Kutta method. The results demonstrate that by adjusting key parameters including modulation frequency, modulation amplitude, and unmodulated pump rate, the laser system can exhibit rich dynamical states, including period-one, period-two, multi-period, and chaotic pulsation. By analyzing the bifurcation diagram, the evolution pattern of output laser pulse characteristics with parameter changes are revealed. The system mainly enters chaos through period-doubling and quasi-periodic routes, while exhibiting a unique phenomenon where the pulse peak and pulse frequency follow synchronized evolutionary paths but with opposite trends in intensity variation, indicating dynamic coupling effects between frequency and intensity domains . By constructing the nonlinear dynamical distributions within a three-dimensional pump modulation parameter space, this study systematically investigates the combined effects of modulation frequency, modulation amplitude, and unmodulated pump rate on the evolution of the laser's nonlinear dynamics. The results show that at lower unmodulated pump rates, the system cannot be driven into nonlinear states even when the modulation amplitude and frequency are relatively large. In contrast, under higher unmodulated pump rates, appropriate tuning of the modulation amplitude and frequency can enable the system to transition from periodic states to chaotic behavior. This research not only clarifies the modulation mechanisms of pump parameters on the laser's nonlinear dynamics, but also provides theoretical guidance for optimizing laser output performance and designing high-performance chaotic lasers, holding significant value for promoting applications of Q-switched lasers in precision measurement and secure communication fields.-
Keywords:
- Pump modulation /
- All-solid-state passively Q-switched laser /
- Nd:YAG/Cr:YAG /
- Nonlinear dynamics
-
[1] Shen J P, Chen Y, Chen L, Xing F Y, Zhang F B, Xia R Z, Zuo H Y, Xiong F, Jiang R R 2025 Chin. Phys. Lett. 42 044202
[2] Liu Y, Liu Z J, Cong Z H, Xu X D, Xu J, Men S J, Xia J B, Zhang S S 2015 Acta Phys. Sin 64 174203 (in Chinese) [刘杨, 刘兆军, 丛振华, 徐晓东, 徐军, 门少杰, 夏金宝, 张飒飒 2015 物理学报 64 174203]
[3] Pavel N, Dascalu T, Salamu G, Dinca M, Boicea N, Birtas A 2015 Opt. Express 23 33028
[4] Huang C X, Zhou L J, Zhong L X, Liang J D, Ma L, Chen G D, Li Z J, Lu T, Jin C J 2025 Opt. Laser Technol. 184 112485
[5] Dascalu T, Croitoru G, Grigore O, Pavel N 2016 Photon. Res. 4 267
[6] Han S, Du Q H, Geng L, Liu X L, Zhao H Y, Liu Y Q, Zhang S B, Yang X Q 2025 Opt. Laser Technol. 181 111642
[7] Dun Y Y, Li P, Chen X H, Ma B M 2016 Chin. Phys. Lett. 33 024201
[8] He Y, Ma Y F, Li J, Li X D, Yan R P, Gao J, Yu X, Sun R, Pan Y B 2016 Opt. Laser Technol. 81 46
[9] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728
[10] Sciamanna M, Shore K A 2015 Nat. Photonics 9 151
[11] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer L, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[12] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991
[13] Tang D Y, Ng S P, Qin L J, Meng X L 2003 Opt. Lett. 28 325
[14] Ng S P, Tang D Y, Qin L J, Meng X L, Xiong Z L 2006 Int. J. Bifurcat. Chaos 16 2689
[15] Kovalsky M, Hnilo A 2010 Opt. Lett. 35 3498
[16] Tsai S Y, Chiu C P, Chang K C, Wei M D 2016 Opt. Lett. 41 1054
[17] Gao Z Y, Xia G Q, Deng T, Lin X D, Tang X, Fan L, Wu Z M 2021 Acta Photon. Sin. 50 0314001 (in Chinese) [高子叶,夏光琼,邓涛,林晓东,唐曦,樊利,吴正茂 2021 光子学报 50 0314001]
[18] Gao Z Y, Xia G Q, Deng T, Lin X D, Tang X, Fan L, Wu Z M 2023 J. Southwest Univ. (Nat. Sci. Ed.) 45 195 (in Chinese) [高子叶,夏光琼,邓涛,林晓东,唐曦,樊利,吴正茂 2023 西南大学学报(自然科学版) 45 195]
[19] Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2010 Opt. Express 18 9423
[20] Li X F, Pan W, Luo B, Ma D 2006 Chaos Solitons Fractals 30 1004
[21] Wei M D, Hsu C C, Huang H H, Wu H H 2010 Opt. Express 18 19977
[22] Hong K G, Wei M D 2013 J. Opt. 15 085201
[23] Villafana-Rauda E, Chiu R, Mora-Gonzalez M, Casillas-Rodriguez F, Medel-Ruiz C L, Sevilla-Escoboza R 2019 Results Phys. 12 908
计量
- 文章访问数: 9
- PDF下载量: 1
- 被引次数: 0