搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe-Cr二元合金微观组织演化的质量密度场耦合动力学Monte-Carlo模拟研究

史芳杰 李南 郭峻铭 陈柏屹 李飒腾 刘浩良 郭建业 李乾武 李烨飞 肖冰

引用本文:
Citation:

Fe-Cr二元合金微观组织演化的质量密度场耦合动力学Monte-Carlo模拟研究

史芳杰, 李南, 郭峻铭, 陈柏屹, 李飒腾, 刘浩良, 郭建业, 李乾武, 李烨飞, 肖冰

Monte-Carlo simulation of mass density field coupled dynamics for microstructural evolution of Fe-Cr binary alloys

Shi Fang-Jie, Li Nan, Guo Jun-Ming, Chen Bai-Yi, Li Sa-Teng, Liu Hao-Liang, Guo Jian-Ye, Li Qian-Wu, Li Ye-Fei, Xiao Bing
PDF
HTML
导出引用
  • 本文建立了一种全新的将动力学Monte-Carlo粒子模拟与基于归一化Gauss函数基组的质量密度场空间粗粒化模型耦合的杂化模拟算法. 采用该杂化模拟算法, 系统对比研究了4种Cr原子含量分别为12.8%, 20.0%, 30.0%和40.0%的Fe-Cr合金中Cr相在温度为673 K下的时效析出动力学机制, 及其时效不同阶段微观组织形貌的演变规律. 研究得出Fe-Cr (12.8%)合金富Cr相时效组织形貌呈现孤立颗粒状空间分布形态, 时效机制属于形核-长大 (NG)机制; 对于Fe-Cr (30.0%)和Fe-Cr (40.0%), 富Cr相时效形貌在形核-生长及熟化阶段均呈现为三维蠕虫状空间分布特征, 时效机制属于条幅分解 (SD)机制; 对于Fe-Cr (20.0%)合金, 其富Cr相组织演化特征介于NG和SD机制之间. 研究进一步发现Cr原子短程序参量可用来分析富Cr相形核-生长阶段Fe-Cr合金原子尺度结构的演变, 但对于时效熟化阶段微观结构组织变化不敏感. 基于空间粗粒化后Fe-Cr合金微观组织形貌, 进一步分析了4种Cr原子含量下Fe-Cr合金相变动力学参数如富Cr相体积分数、平均粒径及相颗粒数密度随时效时间演变. 本文建立的质量密度场耦合动力学Monte-Carlo模拟方法, 为开发多尺度算法模拟合金时效动力学机制及微观组织形貌演变提供了新的思路和研究基础.
    The phase transformation kinetics and micro-structure evolutions of four different Fe-Cr binary alloys, i.e. Fe-Cr (12.8%), Fe-Cr (20.0%), Fe-Cr (30.0%) and Fe-Cr (40.0%) at 673 K, are investigated by using the kinetic Monte-Carlo simulation combined with spatial coarse-grained mass density field description. For all studied Fe-Cr alloys, it is found that the number density of Cr-rich precipitate undergoes a rather rapid increasing at the nucleation stage and then gradually decreases with the simulation time increasing in the coarsening stage during aging. Increasing the Cr concentration in Fe-Cr alloy can significantly reduce the duration of nucleation and the time interval between nucleation and coarsening. From the coarse-grained mass density field models of Cr-rich precipitates at different aging stages for the four Fe-Cr alloys, we discover that the Cr-rich phase shows the isolated spherical particle-like morphology for the aged Fe-Cr (12.8%) alloy, revealing the nucleation and growth (NG) mechanism. Meanwhile, the Cr-rich precipitates possess a characteristic three-dimensional interconnected microstructure, a signature of spinodal decomposition mechanism. Otherwise, the Cr-rich phase morphology in Fe-Cr (20.0%) exhibits the characteristics of both NG mechanism and SD mechanism. It is also found that the short-range order parameter of Cr atoms in Fe-Cr alloy is indeed very sensitive to the change of atomic structure at the early stage of aging or nucleation stage, which, however, is almost independent of the changing of morphology of Cr-precipitates in the later coarsening process. Finally, the phase transformation kinetics of Cr-rich precipitates during aging are analyzed by calculating the phase volume fraction, average diameter and number density, concluding that the Cr-rich phase growth kinetics in Fe-Cr (20.0%) alloy can be described by the well-known Lifshitz-Slyozov-Wagner law in the coarsening stage. However, the coarsening kinetics of Fe-Cr (12.8%), Fe-Cr (30.0%) and Fe-Cr (40.0%) alloys are not caused by the LSW mechanism.
      通信作者: 李南, ln906061119@stu.xjtu.edu.cn ; 李烨飞, liyefei@xjtu.edu.cn ; 肖冰, bingxiao84@xjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFB1901500)资助的课题.
      Corresponding author: Li Nan, ln906061119@stu.xjtu.edu.cn ; Li Ye-Fei, liyefei@xjtu.edu.cn ; Xiao Bing, bingxiao84@xjtu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1901500).
    [1]

    Terentyev D A, Bonny G, Malerba L 2008 Acta Mater. 56 3229Google Scholar

    [2]

    Zhou J, Odqvist J, Höglund L, Thuvander M, Barkar T, Hedström P 2014 Scr. Mater. 75 62Google Scholar

    [3]

    史佳庆, 薛飞, 彭群家, 沈耀 2020 材料研究学报 34 328Google Scholar

    Shi J Q, Xue F, Peng Q J, Shen Y 2020 Chin. J. Mater. Res. 34 328Google Scholar

    [4]

    Xu X, Westraadt J E, Odqvist J, Youngs T G A, King S M, Hedström P 2018 Acta Mater. 145 347Google Scholar

    [5]

    Yan Z, Li Y, Zhou X, Zhang Y, Hu R 2017 J. Alloys Compd. 725 1035Google Scholar

    [6]

    Eich S M, Beinke D, Schmitz G 2015 Comput. Mater. Sci. 104 185Google Scholar

    [7]

    Martínez E, Senninger O, Fu C, Soisson F 2012 Phys. Rev. B Condens. Matter Mater. Phys. 86 224109Google Scholar

    [8]

    Pareige C, Roussel M, Novy S, Kuksenko V, Olsson P, Domain C, Pareige P 2011 Acta Mater. 59 2404Google Scholar

    [9]

    Guo W, Garfinkel D A, Tucker J D, Haley D, Young G A, Poplawsky J D 2016 Nanotechnology 27 254004Google Scholar

    [10]

    Xu X, Odqvist J, Colliander M H, Thuvander M, Steuwer A, Westraadt J E, King S, Hedstrom P 2016 Metall. Mater. Trans. A 47 5942Google Scholar

    [11]

    Bonny G, Terentyev D, Malerba L 2008 Comput. Mater. Sci. 42 107Google Scholar

    [12]

    Erhart P, Caro A, Serrano De Caro M, Sadigh B 2008 Phys. Rev. B Condens. Matter Mater. Phys. 77 134206Google Scholar

    [13]

    Nguyen-Manh D, Lavrentiev M Y, Dudarev S L 2008 C. R. Phys. 9 379Google Scholar

    [14]

    Zhou J, Odqvist J, Ruban A, Thuvander M, Xiong W, Ågren J, Olson G B, Hedström P 2017 J. Mater. Sci. 52 326Google Scholar

    [15]

    Mukherjee D, Forslund A, Höglund L, Ruban A, Larsson H, Odqvist J 2022 Comput. Mater. Sci. 202 110955Google Scholar

    [16]

    Olsson P, Wallenius J, Domain C, Nordlund K, Malerba L 2005 Phys. Rev. B Condens. Matter. 72 214119

    [17]

    Ackland G J, Mendelev M I, Srolovitz D J, Han S, Barashev A V 2004 J. Phys. Condens. Matter. 16 S2629Google Scholar

    [18]

    Vineyard G H 1957 J. Phys. Chem. Solids 3 121Google Scholar

    [19]

    Willard A P, Chandler D 2010 J. Phys. Chem. B 114 1954Google Scholar

    [20]

    Mathon M H, de Carlan Y, Geoffroy G, Averty X, Alamo A, de Novion C H 2003 J. Nucl. Mater. 312 236Google Scholar

    [21]

    Miller M K, Hyde J M, Hetherington M G, Cerezo A, Smith G D W, Elliott C M 1995 Acta Metall. Mater. 43 3385Google Scholar

    [22]

    Huse D A 1986 Phys. Rev. B 34 7845

    [23]

    Lifshitz I M, Slyozov V V 1961 J. Phys. Chem. Solids 19 35Google Scholar

    [24]

    Wagner C 1961 Elektro. Chem. 65 581

    [25]

    Lebowitz J L, Marro J, Kalos M H 1982 Acta Metall. Mater. 30 297Google Scholar

    [26]

    Novy S, Pareige P, Pareige C 2009 J. Nucl. Mater. 384 96Google Scholar

  • 图 1  673 K下kMC模拟1.28×105个原子超晶胞计算得到的二元合金富Cr相平均粒径、不同粒径分布范围对应颗粒数密度, 以及总颗粒数密度随模拟总步长演变趋势曲线 (a) Fe-Cr (12.8%); (b) Fe-Cr (20.0%); (c) Fe-Cr (30.0%); (d) Fe-Cr (40.0%)

    Fig. 1.  Predicted average diameter and number density of precipitates of Fe-Cr alloys obtained by kMC simulations using a supercell model containing 1.28×105 atoms, and the total number of density precipitates versus the kMC duration: (a) Fe-Cr (12.8%); (b) Fe-Cr (20.0%); (c) Fe-Cr (30.0%); (a) Fe-Cr (40.0%).

    图 2  673 K下Fe-Cr合金kMC模拟演化总步长为2×1010步时其微观组织形貌 (a) Fe-Cr (12.8%); (b) Fe-Cr (20.0%); (c) Fe-Cr (30.0%); (d) Fe-Cr (40.0%). 图中Fe和Cr原子分别用黄色及蓝色表示

    Fig. 2.  Atomic structures are simulated by kMC in Fe-Cr alloys at 2×1010 steps at 673 K: (a) Fe-Cr (12.8%); (b) Fe-Cr (20.0%); (c) Fe-Cr (30.0%); (d) Fe-Cr (40.0%). Blue balls refer to Cr atoms and other yellow balls are Fe atoms.

    图 3  质量密度场空间粗粒化参数Cth数值测试及其对Fe-Cr (12.8%)合金中富Cr相微观形貌分析结果的影响 (a), (b) kMC粒子模拟结果; (c), (d) Cth = 0.2Cmax; (e), (f) Cth = 0.4Cmax; (g), (h) Cth = 0.6Cmax

    Fig. 3.  Testing the effect of threshold Cth values for extracting the Cr-rich precipitates on the phase morphologies in Fe-Cr (12.8%) alloy using the spatial coarse-graining method: (a), (b) Atomic obtained from kMC simulation results; (c), (d) Cth = 0.2Cmax; (e), (f) Cth = 0.4Cmax; (g), (h) Cth = 0.6Cmax.

    图 4  临界Cth取值不同时, Fe-Cr (12.8%)合金粗粒化计算结果与kMC模拟结果的比较 (a)富Cr相总粒子数密度和平均粒径; (b)相体积分数

    Fig. 4.  Comparison of Cr rich phase calculated from coarsening of Fe-Cr (12.8%) alloy with kMC simulation results at different critical Cth values: (a) Total particle density, average particle size; (b) phase volume fraction.

    图 5  富Cr相在Fe-Cr (12.8%)合金中kMC模拟1.28×105个原子晶胞 (a)—(d)不同时效阶段原子尺度晶体结构; (e)—(h)对应质量密度场空间粗粒化形貌分析三维空间分布图; (i)—(l)典型二维截面图

    Fig. 5.  Cr-rich phase is simulated by kMC in Fe-Cr (12.8%) alloy with 1.28×105 atoms: (a)–(d) Atomic structures obtained from kMC at different kMC steps; (e)–(h) 3D phase morphologies of Cr-rich precipitates in ferrite matrix; (i)–(l) phase morphologies illustrated on 2D slices.

    图 6  富Cr相在Fe-Cr (20.0%)合金中kMC模拟1.28×105个原子晶胞 (a)—(d)在不同时效阶段原子尺度晶体结构; (e)—(h)对应质量密度场空间粗粒化形貌分析三维空间分布图; (i)—(l)典型二维截面图

    Fig. 6.  Cr-rich phase is simulated by kMC in Fe-Cr (20.0%) alloy with 1.28×105 atoms: (a)–(d) Atomic structures obtained from kMC at different kMC steps; (e)–(h) 3D phase morphologies of Cr-rich precipitates in ferrite matrix; (i)–(l) phase morphologies illustrated on 2D slices.

    图 7  富Cr相在Fe-Cr (20.0%)合金中kMC模拟1.28×105个原子晶胞 (a)—(d) 在不同时效阶段原子尺度晶体结构; (e)—(h) 对应质量密度场空间粗粒化形貌分析三维空间分布图; (i)—(l)典型二维截面图

    Fig. 7.  Cr-rich phase is simulated by kMC in Fe-Cr (20.0%) alloy with 1.28×105 atoms: (a)–(d) Atomic structures obtained from kMC at different kMC steps; (e)–(h) 3D phase morphologies of Cr-rich precipitates in ferrite matrix; (i)–(l) phase morphologies illustrated on 2D slices.

    图 8  富Cr相在Fe-Cr (40.0%)合金中kMC模拟1.28×105个原子晶胞 (a)—(d)不同时效阶段原子尺度晶体结构; (e)—(h) 质量密度场空间粗粒化形貌分析三维空间分布图; (i)—(l)典型二维截面图

    Fig. 8.  Cr-rich phase is simulated by kMC in Fe-Cr (40.0%) alloy with 1.28×105 atoms: (a)–(d) Atomic structures obtained from kMC at different kMC steps; (e)–(h) 3D phase morphologies of Cr-rich precipitates in ferrite matrix; (i)–(l) phase morphologies illustrated on 2D slices.

    图 9  4种Fe-Cr二元合金原子SRO与富Cr相粒子数密度随着kMC模拟总步长增加的变化

    Fig. 9.  Variations of SRO and Cr-rich precipitates versus total number of kMC steps for four different Fe-Cr binary alloys.

    图 10  基于质量密度场空间粗粒化模型计算的Fe-Cr合金Cr原子含量空间分布ACF在kMC不同时效阶段曲线 (a) Fe-Cr (12.8%); (b) Fe-Cr (20.0%); (c) Fe-Cr (30.0%); (d) Fe-Cr (40.0%)

    Fig. 10.  Obtained Cr atomic concentration ACF profiles at different aging stages in kMC simulations for four Fe-Cr alloys: (a) Fe-Cr (12.8%); (b) Fe-Cr (20.0%); (c) Fe-Cr (30.0%); (d) Fe-Cr (40.0%).

    图 11  基于空间粗粒化模型分析Fe-Cr合金时效富Cr相形成动力学参数随kMC总步长及时效时间变化曲线 (a)富Cr相体积分数; (b)平均粒径; (c)富Cr相颗粒数密度

    Fig. 11.  Variations of phase transformation kinetic parameters versus the total kMC simulation steps and physical aging time for the formation of Cr-rich precipitates in four different Fe-Cr binary alloys based on spatial coarse-grained mass density field description: (a) Volume fraction of Cr-rich phase; (b) average diameter of precipitates; (c) number of density of Cr-rich precipitates.

  • [1]

    Terentyev D A, Bonny G, Malerba L 2008 Acta Mater. 56 3229Google Scholar

    [2]

    Zhou J, Odqvist J, Höglund L, Thuvander M, Barkar T, Hedström P 2014 Scr. Mater. 75 62Google Scholar

    [3]

    史佳庆, 薛飞, 彭群家, 沈耀 2020 材料研究学报 34 328Google Scholar

    Shi J Q, Xue F, Peng Q J, Shen Y 2020 Chin. J. Mater. Res. 34 328Google Scholar

    [4]

    Xu X, Westraadt J E, Odqvist J, Youngs T G A, King S M, Hedström P 2018 Acta Mater. 145 347Google Scholar

    [5]

    Yan Z, Li Y, Zhou X, Zhang Y, Hu R 2017 J. Alloys Compd. 725 1035Google Scholar

    [6]

    Eich S M, Beinke D, Schmitz G 2015 Comput. Mater. Sci. 104 185Google Scholar

    [7]

    Martínez E, Senninger O, Fu C, Soisson F 2012 Phys. Rev. B Condens. Matter Mater. Phys. 86 224109Google Scholar

    [8]

    Pareige C, Roussel M, Novy S, Kuksenko V, Olsson P, Domain C, Pareige P 2011 Acta Mater. 59 2404Google Scholar

    [9]

    Guo W, Garfinkel D A, Tucker J D, Haley D, Young G A, Poplawsky J D 2016 Nanotechnology 27 254004Google Scholar

    [10]

    Xu X, Odqvist J, Colliander M H, Thuvander M, Steuwer A, Westraadt J E, King S, Hedstrom P 2016 Metall. Mater. Trans. A 47 5942Google Scholar

    [11]

    Bonny G, Terentyev D, Malerba L 2008 Comput. Mater. Sci. 42 107Google Scholar

    [12]

    Erhart P, Caro A, Serrano De Caro M, Sadigh B 2008 Phys. Rev. B Condens. Matter Mater. Phys. 77 134206Google Scholar

    [13]

    Nguyen-Manh D, Lavrentiev M Y, Dudarev S L 2008 C. R. Phys. 9 379Google Scholar

    [14]

    Zhou J, Odqvist J, Ruban A, Thuvander M, Xiong W, Ågren J, Olson G B, Hedström P 2017 J. Mater. Sci. 52 326Google Scholar

    [15]

    Mukherjee D, Forslund A, Höglund L, Ruban A, Larsson H, Odqvist J 2022 Comput. Mater. Sci. 202 110955Google Scholar

    [16]

    Olsson P, Wallenius J, Domain C, Nordlund K, Malerba L 2005 Phys. Rev. B Condens. Matter. 72 214119

    [17]

    Ackland G J, Mendelev M I, Srolovitz D J, Han S, Barashev A V 2004 J. Phys. Condens. Matter. 16 S2629Google Scholar

    [18]

    Vineyard G H 1957 J. Phys. Chem. Solids 3 121Google Scholar

    [19]

    Willard A P, Chandler D 2010 J. Phys. Chem. B 114 1954Google Scholar

    [20]

    Mathon M H, de Carlan Y, Geoffroy G, Averty X, Alamo A, de Novion C H 2003 J. Nucl. Mater. 312 236Google Scholar

    [21]

    Miller M K, Hyde J M, Hetherington M G, Cerezo A, Smith G D W, Elliott C M 1995 Acta Metall. Mater. 43 3385Google Scholar

    [22]

    Huse D A 1986 Phys. Rev. B 34 7845

    [23]

    Lifshitz I M, Slyozov V V 1961 J. Phys. Chem. Solids 19 35Google Scholar

    [24]

    Wagner C 1961 Elektro. Chem. 65 581

    [25]

    Lebowitz J L, Marro J, Kalos M H 1982 Acta Metall. Mater. 30 297Google Scholar

    [26]

    Novy S, Pareige P, Pareige C 2009 J. Nucl. Mater. 384 96Google Scholar

  • [1] 续文龙, 开玥, 张锴, 郑百林. 基于粗粒化分子动力学的自支撑石墨烯镜面屈曲研究. 物理学报, 2023, 72(24): 246801. doi: 10.7498/aps.72.20231120
    [2] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [3] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静. Fe-Cr合金辐照空洞微结构演化的相场法模拟. 物理学报, 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [4] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟. 物理学报, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [5] 杨青林, 王立夫, 李欢, 余牧舟. 基于相对距离的复杂网络谱粗粒化方法. 物理学报, 2019, 68(10): 100501. doi: 10.7498/aps.68.20181848
    [6] 周建, 贾贞, 李科赞. 复杂网络谱粗粒化方法的改进算法. 物理学报, 2017, 66(6): 060502. doi: 10.7498/aps.66.060502
    [7] 王曦, 黎明, 叶方富, 周昕. DNA超分子水凝胶的粗粒化建模与模拟. 物理学报, 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [8] 马姗, 马军, 杨光参. 非均匀外力对粗粒化DNA穿孔行为影响的模拟研究. 物理学报, 2016, 65(14): 148701. doi: 10.7498/aps.65.148701
    [9] 文平, 李春福, 赵毅, 张凤春, 童丽华. Cr,Mo,Ni在α-Fe(C)中占位、键合性质及合金化效应的第一性原理研究. 物理学报, 2014, 63(19): 197101. doi: 10.7498/aps.63.197101
    [10] 刘贵立. Fe-Cr-Al合金高温氧化行为电子理论研究. 物理学报, 2010, 59(1): 494-498. doi: 10.7498/aps.59.494
    [11] 张国英, 张辉, 方戈亮, 罗志成. Fe-Cr-Al合金氧化膜形成机理电子理论研究. 物理学报, 2009, 58(9): 6441-6445. doi: 10.7498/aps.58.6441
    [12] 陈云, 康秀红, 肖纳敏, 郑成武, 李殿中. 多晶材料晶粒生长粗化过程的相场方法模拟. 物理学报, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [13] 陈 华, 杜 磊, 庄奕琪. 相干介观系统中散粒噪声的Monte Carlo模拟方法研究. 物理学报, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [14] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [15] 吴柏枚, 杨东升, 盛 松, 刘 卫, 徐未名. Cr75Fe16Mn9合金的低频内耗. 物理学报, 1999, 48(8): 1503-1508. doi: 10.7498/aps.48.1503
    [16] 万发荣, 褚武扬, 肖纪美, 高桥平七郎. Fe-10%Cr铁素体合金中氢对辐照诱起偏析的影响. 物理学报, 1996, 45(3): 464-469. doi: 10.7498/aps.45.464
    [17] 黄志高. a—Fe—(Co,Cr)—Zr系列合金的穆斯堡尔谱研究. 物理学报, 1989, 38(10): 1698-1703. doi: 10.7498/aps.38.1698
    [18] 王钊, 孟昭富, 王煜明, 王文魁, 王松涛. Ni83Cr7Fe3Si4B3非晶态合金在常压及高压下的晶化过程. 物理学报, 1985, 34(1): 48-55. doi: 10.7498/aps.34.48
    [19] 唐棣生, 张玉苓, 易孙圣, 林文桂, 李国栋. Fe-Cr-Co永磁合金的高温X射线衍射研究. 物理学报, 1982, 31(8): 1080-1084. doi: 10.7498/aps.31.1080
    [20] 李国栋, 冯敏英, 邵涵如, 李士, 吴卫芳, 李东升. Fe-Cr-Co-Si永磁合金的磁性和穆斯堡尔效应研究. 物理学报, 1981, 30(2): 254-259. doi: 10.7498/aps.30.254
计量
  • 文章访问数:  3329
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-05-05
  • 上网日期:  2023-05-06
  • 刊出日期:  2023-07-05

/

返回文章
返回