搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烷烃链长对直链烷烃液体膜摩擦性质的影响

张兆慧 于晓东 李海鹏 韩奎

引用本文:
Citation:

烷烃链长对直链烷烃液体膜摩擦性质的影响

张兆慧, 于晓东, 李海鹏, 韩奎

Effect of alkane chain length on tribological properties of straight chain alkane liquid film

Zhang Zhao-Hui, Yu Xiao-Dong, Li Hai-Peng, Han Kui
PDF
HTML
导出引用
  • 采用分子动力学方法, 模拟了两块金[111]基板及其间由不同链长的直链烷烃CnH2n + 2 (n = 6, 8, 10, 12, 14, 16, 18)组成的7种纯液体膜及6种混合分子液体膜的摩擦行为, 分析了分子链长对薄膜摩擦性质的影响以及滑动过程中的膜的结构变化机制. 结果表明: 在纯液体膜中, 十六烷液体膜的摩擦力最大; 碳原子数 n > 8时, 液体膜摩擦性质随着分子链长的增加而保持稳定. 在C6H14与CnH2n + 2的1∶1混合液体膜中, 己烷与十二烷混合液体膜的摩擦最大; 当长链分子CnH2n + 2的碳原子数n > 12时, 混合膜的摩擦性质较为稳定; 烷烃分子的碳原子数n > 10时, 加入短链分子会增强膜的摩擦. 滑动过程中在基板表面附近形成的多层高致密性分层是降低摩擦的主要原因, 单层或无分层结构导致较高摩擦. 液体膜与基板间相互作用对摩擦有贡献, 摩擦力主要来自膜内粘滞作用.
    How to overcome the friction between the micro components has become a key point of the successful operation of the micro/nano-electric mechanical systems. The understanding of the friction mechanism of the alkane liquid film confined between two substrates is important when the friction law on a macro/nano scale is not applicable. In this work, the molecular dynamics simulations are used to study the effect of the chain length on the friction properties of the liquid films that are confined between two golden substrates. There are seven pure alkane liquid films that are composed of one molecule CnH2n + 2(n = 6, 8, 10, 12, 14, 16, 18), and six mixed alkane liquid films that are composed of two molecules C6H14/CnH2n + 2(n = 8, 10, 12, 14, 16, 18) with a ratio of 1∶1. The results show that the friction force and the coefficient of friction of pure alkane liquid films both increase as the chain length increases when the carbon atom number is less than 12, whereas the friction property keeps stable when the carbon atom number of the alkane molecule is greater than 10 and the pure hexadecane liquid film has the largest friction force. In the mixed films, the addition of short chain alkane molecules can strengthen the friction, and the hexane/dodecane mixed film has the maximum friction force. The short chain molecule dilutes the C8H18 film and C10H22 film which cause the friction force to decrease. During the sliding progress, the formation of solid-like high density-packet layers is the main reason for the friction reduction. When no solid-like layer or just one solid-like layer is formed at the interface of golden base, the liquid alkane film is liquid-like and its viscosity becomes much larger than that in the normal state, which leads to high friction force. The short chain molecules reduce the density of the solid-like layers, which causes the film to transform from solid-like state to liquid state, thus resulting in the increase of friction. The friction property mainly depends on the layered structure, and the interaction between the golden surface and liquid film contributes to the friction. This study helps to understand the friction mechanism of ultra-thin liquid films.
      通信作者: 李海鹏, haipli@cumt.edu.cn ; 韩奎, han6409@263.net
    • 基金项目: 国家自然科学基金(批准号: 11504418)、江苏省高等学校自然科学研究面上项目(批准号: 16KJB460022)和中央高校基本科研业务费 (批准号: 2019ZDPY16)资助的课题
      Corresponding author: Li Hai-Peng, haipli@cumt.edu.cn ; Han Kui, han6409@263.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504418), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 16KJB460022), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2019ZDPY16)
    [1]

    Lewis J B, Vilt S G, Rivera J L, Jennings G K, Mccabe C 2012 Langmuir 28 14218Google Scholar

    [2]

    Yang G, Jin F, Yu L, Zhang P 2015 Tribo. Lett. 57 12Google Scholar

    [3]

    Cheng H, Hu Y 2012 Adv. Colloid Interface Sci. 171–172 53Google Scholar

    [4]

    潘鹤, 滕淑华, 丁翠翠 2012 物理化学学报 28 917Google Scholar

    Pan H, Teng S H, Ding C C 2012 Acta Phys. Chim. Sin. 28 917Google Scholar

    [5]

    Mcdermott M T, Green J B D, Porter M D 1997 Langmuir 13 25040

    [6]

    Booth B D, Vilt S G, Mccabe C, Jennings G K 2009 Langmuir 25 9995Google Scholar

    [7]

    刘蕾, 宋仕永, 张平余 2012 物理化学学报 28 427Google Scholar

    Liu L, Song S Y, Zhang P Y 2012 Acta Phys. Chim. Sin. 28 427Google Scholar

    [8]

    张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟 2012 物理学报 61 028701Google Scholar

    Zhang Z H, Han K, Cao J, Wang F, Yang L J 2012 Acta Phys. Sin. 61 028701Google Scholar

    [9]

    Gosvami N N, Egberts P, Bennewitz R 2011 J. Phys. Chem. A 115 6942Google Scholar

    [10]

    Granick S 1991 Science 253 1374Google Scholar

    [11]

    Cui S T, Cummings P T, Cochran H D 2001 Fluid Phase Equilibria 183–184 381Google Scholar

    [12]

    Vasko A A, Kutsenko V Y, Marchenko A A, Braun O M 2019 Tribo. Lett. 67 49Google Scholar

    [13]

    Ewen J P, Gattinoni C, Zhang J, Heyes D M, Spikes H A, Dini D 2017 Phys. Chem. Chem. Phys. 19 17883Google Scholar

    [14]

    Jorgensen W L, Tirado-Rives J 1988 J. Am. Chem. Soc. 110 1657Google Scholar

    [15]

    Maxwell D S, Tirado-Rives J, Jorgensen W L 1996 J. Am. Chem. Soc. 118 11225Google Scholar

    [16]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen L W 1997 J. Comp. Chem. 18 1955Google Scholar

    [17]

    张兆慧, 李海鹏, 韩奎 2013 物理学报 62 158701Google Scholar

    Zhang Z H, Li H P, Han K 2013 Acta Phys. Sin. 62 158701Google Scholar

    [18]

    Jiang B W, Keffer J D, Edwards J B 2006 J. Fluorine Chem. 127 787Google Scholar

    [19]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [20]

    Savio D, Fillot N, Vergne P, Zaccheddu M 2012 Tribo. Lett. 46 11Google Scholar

    [21]

    Plimpton S 1995 J. Comp. Phys. 117 1Google Scholar

    [22]

    Sabzevari S M, Mcgraw J D, Woodadams P 2016 RSC Adv. 6 91163Google Scholar

    [23]

    Mazyar O A, Jennings G K, Mccabe C 2009 Langmuir 25 5103Google Scholar

  • 图 1  液态烷烃C18H38润滑膜模型

    Fig. 1.  Liquid alkane C18H38 lubricant film model

    图 2  (a) C12H26液体膜在滑动过程中的摩擦力随滑动距离的变化; (b) 7种液体膜的平均摩擦力和平均摩擦系数

    Fig. 2.  (a) Friction curve of C12H26 liquid film in sliding process with sliding distance; (b) the average friction force and average coefficient of friction (COF) of the seven liquid films

    图 3  六种混合分子膜的平均摩擦力和平均摩擦系数

    Fig. 3.  The average friction force and average COF of the six mixed films

    图 4  (a)纯C12H26液体膜在滑动过程中的分层结构; (b)四种纯液体膜沿Z方向的密度分布

    Fig. 4.  (a) Layered structure of C12H26 liquid film in sliding process; (b) density distribution along Z direction of four pure liquid films (C6H14, C12H26, C16H34, C18H40).

    图 5  混合液体膜在上基板表面形成的分层内分子分布图 (a) C6C8; (b) C6C12; (c) C6C18

    Fig. 5.  Distribution of the molecules in the layer formed on the surface of the base: (a) C6C8; (b) C6C12; (c) C6C18.

    图 6  混合膜在滑动过程沿着Z方向密度分布

    Fig. 6.  Distribution of density along Z direction in sliding process of mixed films

    表 1  纯液体膜中上基板与液体膜间相互作用 (kJ/mol)

    Table 1.  Interaction between upper substrate and liquid film (kJ/mol)

    模型 C6 C8 C10 C12 C14 C16 C18
    作用能 2285 2434 2438 2484 2496 2408 2488
    下载: 导出CSV

    表 2  混合液体膜中上基板与液体膜间相互作用(kJ/mol)

    Table 2.  Interaction between upper substrate and mixed liquid film (kJ/mol).

    模型 C6C8 C6C10 C6C12 C6C14 C6C16 C6C18
    作用能 2396 2396 2893 2438 2400 2505
    下载: 导出CSV
  • [1]

    Lewis J B, Vilt S G, Rivera J L, Jennings G K, Mccabe C 2012 Langmuir 28 14218Google Scholar

    [2]

    Yang G, Jin F, Yu L, Zhang P 2015 Tribo. Lett. 57 12Google Scholar

    [3]

    Cheng H, Hu Y 2012 Adv. Colloid Interface Sci. 171–172 53Google Scholar

    [4]

    潘鹤, 滕淑华, 丁翠翠 2012 物理化学学报 28 917Google Scholar

    Pan H, Teng S H, Ding C C 2012 Acta Phys. Chim. Sin. 28 917Google Scholar

    [5]

    Mcdermott M T, Green J B D, Porter M D 1997 Langmuir 13 25040

    [6]

    Booth B D, Vilt S G, Mccabe C, Jennings G K 2009 Langmuir 25 9995Google Scholar

    [7]

    刘蕾, 宋仕永, 张平余 2012 物理化学学报 28 427Google Scholar

    Liu L, Song S Y, Zhang P Y 2012 Acta Phys. Chim. Sin. 28 427Google Scholar

    [8]

    张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟 2012 物理学报 61 028701Google Scholar

    Zhang Z H, Han K, Cao J, Wang F, Yang L J 2012 Acta Phys. Sin. 61 028701Google Scholar

    [9]

    Gosvami N N, Egberts P, Bennewitz R 2011 J. Phys. Chem. A 115 6942Google Scholar

    [10]

    Granick S 1991 Science 253 1374Google Scholar

    [11]

    Cui S T, Cummings P T, Cochran H D 2001 Fluid Phase Equilibria 183–184 381Google Scholar

    [12]

    Vasko A A, Kutsenko V Y, Marchenko A A, Braun O M 2019 Tribo. Lett. 67 49Google Scholar

    [13]

    Ewen J P, Gattinoni C, Zhang J, Heyes D M, Spikes H A, Dini D 2017 Phys. Chem. Chem. Phys. 19 17883Google Scholar

    [14]

    Jorgensen W L, Tirado-Rives J 1988 J. Am. Chem. Soc. 110 1657Google Scholar

    [15]

    Maxwell D S, Tirado-Rives J, Jorgensen W L 1996 J. Am. Chem. Soc. 118 11225Google Scholar

    [16]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen L W 1997 J. Comp. Chem. 18 1955Google Scholar

    [17]

    张兆慧, 李海鹏, 韩奎 2013 物理学报 62 158701Google Scholar

    Zhang Z H, Li H P, Han K 2013 Acta Phys. Sin. 62 158701Google Scholar

    [18]

    Jiang B W, Keffer J D, Edwards J B 2006 J. Fluorine Chem. 127 787Google Scholar

    [19]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [20]

    Savio D, Fillot N, Vergne P, Zaccheddu M 2012 Tribo. Lett. 46 11Google Scholar

    [21]

    Plimpton S 1995 J. Comp. Phys. 117 1Google Scholar

    [22]

    Sabzevari S M, Mcgraw J D, Woodadams P 2016 RSC Adv. 6 91163Google Scholar

    [23]

    Mazyar O A, Jennings G K, Mccabe C 2009 Langmuir 25 5103Google Scholar

  • [1] 何卓亚, 杨启容, 李昭莹, 毛蕊, 王力伟, 闫晨宣. 介孔尺度及结构对混合硝酸盐热输运特性的影响. 物理学报, 2022, 71(3): 030503. doi: 10.7498/aps.71.20211276
    [2] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [3] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [4] 邓剑锋, 李慧琴, 于帆, 梁齐. 机械剥离折叠石墨烯粘附与纳米摩擦性质. 物理学报, 2020, 69(7): 076802. doi: 10.7498/aps.69.20191825
    [5] 董赟, 段早琦, 陶毅, Gueye Birahima, 张艳, 陈云飞. 基底支撑刚度梯度变化对石墨烯层间摩擦力的影响. 物理学报, 2019, 68(1): 016801. doi: 10.7498/aps.68.20181905
    [6] 陶强, 马帅领, 崔田, 朱品文. 过渡金属硼化物的结构与性质. 物理学报, 2017, 66(3): 036103. doi: 10.7498/aps.66.036103
    [7] 刘凤金, 陈水源, 黄志高. Ba掺杂及工艺对BiFeO3体系结构和磁特性的影响. 物理学报, 2014, 63(8): 085101. doi: 10.7498/aps.63.085101
    [8] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理. 物理学报, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [9] 王建军, 王飞, 原鹏飞, 孙强, 贾瑜. 石墨烯层间纳米摩擦性质的第一性原理研究. 物理学报, 2012, 61(10): 106801. doi: 10.7498/aps.61.106801
    [10] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响. 物理学报, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [11] 肖夏杰, 韩晓琴, 刘玉芳. XF2(X=B,N)分子基态的结构与势能函数. 物理学报, 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [12] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响. 物理学报, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [13] 文玉华, 孙世刚, 张杨, 朱梓忠. 铂纳米晶在升温过程中结构演化与熔化特征的原子级模拟研究. 物理学报, 2009, 58(4): 2585-2589. doi: 10.7498/aps.58.2585
    [14] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [15] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究. 物理学报, 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [16] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 一氧化碳合成金刚石薄膜的形貌和结构分析. 物理学报, 2007, 56(11): 6572-6579. doi: 10.7498/aps.56.6572
    [17] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响. 物理学报, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [18] 方庆清, 焦永芳, 李 锐, 汪金芝, 陈 辉. 单轴M型SrFe12-xCrxO19超细粒子结构与磁性研究. 物理学报, 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [19] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [20] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究. 物理学报, 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
计量
  • 文章访问数:  7007
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-16
  • 修回日期:  2019-08-19
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回