搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SPPs-CDEW混合模式的亚波长单缝多凹槽结构全光二极管

祁云平 南向红 摆玉龙 王向贤

引用本文:
Citation:

基于SPPs-CDEW混合模式的亚波长单缝多凹槽结构全光二极管

祁云平, 南向红, 摆玉龙, 王向贤

All-optical diode of subwavelength single slit with multi-pair groove structure based on SPPs-CDEW hybrid model

Qi Yun-Ping, Nan Xiang-Hong, Bai Yu-Long, Wang Xiang-Xian
PDF
导出引用
  • 全光二极管是集成光子回路上最基本的光子器件,如何有效增强全光二极管的单向透射性,提高消光比一直是学者们研究的重点.当前,利用表面等离极化激元(surface plasmon polaritons,SPPs)和复合衍射衰逝波(composite diffracted evanescent wave,CDEW)的亚波长金属微纳结构构建全光二极管器件还鲜有研究.因此,开发出一种可调制的全光二极管,对未来制备复杂的光子回路具有重要意义.本文提出了一种基于SPPs-CDEW混合模式设计全光二极管的方法和结构,该结构结合纳米缝中的类法布里-珀罗共振效应,利用结构参数对SPPs进行调控,实现了光束单向透过的功能.首先,利用理论推导和有限元算法分析了单缝-对称双凹槽纳米结构的透射增强现象,提出了透射增强和削弱的物理机理.其次,计算出规约化透射率随单狭缝和凹槽对之间距离变化的远场透射谱,给出的理论和数值计算结果符合得很好.最后,通过此透射谱精确确定凹槽的位置和数量,得出上表面对称分布五对增强透射凹槽、下表面六对抑制透射凹槽的最优全光二极管结构,有效增强了全光二极管的单向透射性,提高了消光比,最大消光比可以达到38.3 dB,即正向透射率是反向透射率的6761倍,比已有文献提高了14.6 dB,并在850 nm左右有70 nm宽的工作波长带宽(20 dB).本文提出的光二极管结构简单,宽带宽工作,易于集成,耦合效率高,研究结果对光学信号传输、集成光回路、超分辨率光刻等相关领域具有潜在的应用价值.
    All-optical diode is the most basic photonic device in integrated optical circuits. It is of great significance to develop a modulated optical diode for preparing complex optical circuits in the near future. However, there are few studies on constructing all-optical diodes in subwavelength metal micro-nano structured devices based on the hybrid model of surface plasmon polaritons (SPPs) and composite diffracted evanescent wave (CDEW). In fact, most of the researches have been focusing on how to effectively enhance the unidirectional nonreciprocal transmission of the optical diode and improve the extinction ratio. According to SPPs-CDEW hybrid states, in this paper we put forward a novel method of designing an optical diode and its structure. The structure consists of a subwavelength single micro-nano slit surrounded by symmetric multi-pair grooves on a silver film. First of all, on the basis of the single slit structure of the silver film, the pairs of the groove structures are etched on both sides of the silver film: the positions and quantities of the grooves on the top and bottom surfaces are asymmetric. Then combining with an effect similar to Fabry-Perot resonance effect inside the micro-nano slit, the function of beam unidirectional transmission is achieved by controlling SPPs through changing the geometric parameters of the structure. Furthermore, in order to realize unidirectional nonreciprocal transmission, by means of theoretical derivation and the finite element method (FEM), in this paper we analyze the transmission enhancement phenomenon of single slit-symmetric pair of groove micro-nano structure, discuss the physical mechanisms of transmission enhancement and weakening, and also give the far field transmission spectrum of the normalized transmission changing with the distance between slit and pair grooves. The results obtained from the rigorous theoretical formula are in excellent agreement with the numerical results obtained by using FEM. Finally, as the position and number of the pair grooves are precisely determined by this transmission spectrum, the optimized all-optical diode structure, of which the unidirectional transmission is effectively enhanced and the extinction ratio of the optical diode is improved, is achieved with five pairs of enhanced transmission grooves formed on the top surface of the Ag film and six pairs of weakened transmission grooves formed on the bottom surface. The maximum extinction ratio reaches 38.3 dB, which means that the forward transmittance is 6761 times the reverse transmittance, i.e., it increases 14.6 dB over the result from previous theoretical work. And there appears a 70 nm wavelength band width (20 dB) in the operating wavelength 850 nm. The proposed optical diode has the advantages of simple structure, wide working bandwidth, easy integration, and high coupling efficiency. The research of the optical diode is valuable for the potential applications in optical signal transmission, optical integrated optical circuit, super-resolution lithography and other related fields.
      通信作者: 祁云平, yunpqi@126.com
    • 基金项目: 国家自然科学基金(批准号:61367005,41461078)资助的课题.
      Corresponding author: Qi Yun-Ping, yunpqi@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61367005, 41461078).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [3]

    Treacy M M J 2002 Phys. Rev. B 66 195105

    [4]

    Porto J A, Garcia-Vidal F J, Pendry J B 1999 Phys. Rev. Lett. 83 2845

    [5]

    Went H E, Hibbins A P, Sambels J R, Lawrence C R, Crick A P 2000 Appl. Phys. Lett. 77 2789

    [6]

    Gay G, Alloschery O, Viarisde Lesegno B, O'Dwyer C, Weiner J, Lezec H J 2006 Nat. Phys. 2 262

    [7]

    Lezec H J, Thio T 2004 Opt. Express 12 3629

    [8]

    Lalanne P, Hugonin J P 2006 Nat. Phys. 2 551

    [9]

    Lopez-Tejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [10]

    Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [11]

    Crouse D, Keshavareddy P 2005 Opt. Express 13 7760

    [12]

    Lalanne P, Hugonin J P, Rodier J C 2005 Phys. Rev. Lett. 95 263902

    [13]

    Garcia-Vidal F J, Lezec H J, Ebbesen T W, Martin-Moreno L 2003 Phys. Rev. Lett. 90 21

    [14]

    Bravo-Abad, Martin-Moreno L, Garcia-Vidal F J 2004 Phys. Rev. E 69 026601

    [15]

    Zhou Y S, Gu B Y, Wang H Y, Lan S 2009 Eur. Phys. Lett. 85 24005

    [16]

    Lu Y Q, ChengXY, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 物理学报 65 204207]

    [17]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martin-moreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [18]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [19]

    Li H, Deng Z, Huang J, Li Y 2015 Opt. Lett. 40 2572

    [20]

    Xue C, Jiang H, Chen H 2010 Opt. Express 18 7479

    [21]

    Liu Y F, Liu B, He X D, Li S J 2016 Acta Phys. Sin. 65 064207 (in Chinese) [刘云凤, 刘彬, 何兴道, 李淑静 2016 物理学报 65 064207]

    [22]

    Lu C, Hu X, Yang H, Gong Q 2011 Opt. Lett. 36 4668

    [23]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948

    [24]

    LuC, Hu X, Zhang Y, Li Z, Xu X, Yang H, Gong Q 2011 Appl. Phys. Lett. 99 051107

    [25]

    Feng S, Ren C, Wang W, Wang Y 2013 Opt. Commun. 289 144

    [26]

    Amin K, Mohsen R, Ali P F, Khashayar M 2013 J. Opt. 15 075501

    [27]

    Kang M S, Butsch A, Russell P S 2011 Nat. Photo. 5 549

    [28]

    Liu L, Ding Y, Cai X, Zhang X 2016 Front. Optoelectron. 9 489

    [29]

    Zhu H B, Jiang C 2011 Opt. Lett. 36 1308

    [30]

    Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photon. 5 758

    [31]

    Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M H 2011 Science 22 1214383

    [32]

    Zhang X Z, Feng M, Zhang X Z 2013 Acta Phys. Sin. 62 024201 (in Chinese) [张学智, 冯鸣, 张心正 2013 物理学报 62 024201]

    [33]

    Bulgakov E N, Sadreev A F 2014 Opt. Lett. 39 1787

    [34]

    Haripadman P C, John H, Philip R, Gopinath P 2014 Appl. Phys. Lett. 105 221102

    [35]

    Sun Y, Tong Y, Xue C, Chen H 2013 Appl. Phys. Lett. 103 091904

    [36]

    Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394

    [37]

    Min C J, Wang P, Jiao X J, Ming H 2007 Chin. Phys. Lett. 24 2922

    [38]

    Cao Q, Lalanne P 2002 Phys. Rev. Lett. 88 057403

    [39]

    Johnson P B, Christy R W 1975 Phys. Rev. B 11 1315

    [40]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic Press) p350

    [41]

    Qi Y P, Miao J G, Hong S, Tentzeris M M 2010 IEEE Trans. Microw. Theory Tech. 58 3657

    [42]

    Vial A, Grimault A S, Macias D, Barchiesi D, Lamy D L C M 2005 Phys. Rev. B 71 085416

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [3]

    Treacy M M J 2002 Phys. Rev. B 66 195105

    [4]

    Porto J A, Garcia-Vidal F J, Pendry J B 1999 Phys. Rev. Lett. 83 2845

    [5]

    Went H E, Hibbins A P, Sambels J R, Lawrence C R, Crick A P 2000 Appl. Phys. Lett. 77 2789

    [6]

    Gay G, Alloschery O, Viarisde Lesegno B, O'Dwyer C, Weiner J, Lezec H J 2006 Nat. Phys. 2 262

    [7]

    Lezec H J, Thio T 2004 Opt. Express 12 3629

    [8]

    Lalanne P, Hugonin J P 2006 Nat. Phys. 2 551

    [9]

    Lopez-Tejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [10]

    Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [11]

    Crouse D, Keshavareddy P 2005 Opt. Express 13 7760

    [12]

    Lalanne P, Hugonin J P, Rodier J C 2005 Phys. Rev. Lett. 95 263902

    [13]

    Garcia-Vidal F J, Lezec H J, Ebbesen T W, Martin-Moreno L 2003 Phys. Rev. Lett. 90 21

    [14]

    Bravo-Abad, Martin-Moreno L, Garcia-Vidal F J 2004 Phys. Rev. E 69 026601

    [15]

    Zhou Y S, Gu B Y, Wang H Y, Lan S 2009 Eur. Phys. Lett. 85 24005

    [16]

    Lu Y Q, ChengXY, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 物理学报 65 204207]

    [17]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martin-moreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [18]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [19]

    Li H, Deng Z, Huang J, Li Y 2015 Opt. Lett. 40 2572

    [20]

    Xue C, Jiang H, Chen H 2010 Opt. Express 18 7479

    [21]

    Liu Y F, Liu B, He X D, Li S J 2016 Acta Phys. Sin. 65 064207 (in Chinese) [刘云凤, 刘彬, 何兴道, 李淑静 2016 物理学报 65 064207]

    [22]

    Lu C, Hu X, Yang H, Gong Q 2011 Opt. Lett. 36 4668

    [23]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948

    [24]

    LuC, Hu X, Zhang Y, Li Z, Xu X, Yang H, Gong Q 2011 Appl. Phys. Lett. 99 051107

    [25]

    Feng S, Ren C, Wang W, Wang Y 2013 Opt. Commun. 289 144

    [26]

    Amin K, Mohsen R, Ali P F, Khashayar M 2013 J. Opt. 15 075501

    [27]

    Kang M S, Butsch A, Russell P S 2011 Nat. Photo. 5 549

    [28]

    Liu L, Ding Y, Cai X, Zhang X 2016 Front. Optoelectron. 9 489

    [29]

    Zhu H B, Jiang C 2011 Opt. Lett. 36 1308

    [30]

    Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photon. 5 758

    [31]

    Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M H 2011 Science 22 1214383

    [32]

    Zhang X Z, Feng M, Zhang X Z 2013 Acta Phys. Sin. 62 024201 (in Chinese) [张学智, 冯鸣, 张心正 2013 物理学报 62 024201]

    [33]

    Bulgakov E N, Sadreev A F 2014 Opt. Lett. 39 1787

    [34]

    Haripadman P C, John H, Philip R, Gopinath P 2014 Appl. Phys. Lett. 105 221102

    [35]

    Sun Y, Tong Y, Xue C, Chen H 2013 Appl. Phys. Lett. 103 091904

    [36]

    Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394

    [37]

    Min C J, Wang P, Jiao X J, Ming H 2007 Chin. Phys. Lett. 24 2922

    [38]

    Cao Q, Lalanne P 2002 Phys. Rev. Lett. 88 057403

    [39]

    Johnson P B, Christy R W 1975 Phys. Rev. B 11 1315

    [40]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic Press) p350

    [41]

    Qi Y P, Miao J G, Hong S, Tentzeris M M 2010 IEEE Trans. Microw. Theory Tech. 58 3657

    [42]

    Vial A, Grimault A S, Macias D, Barchiesi D, Lamy D L C M 2005 Phys. Rev. B 71 085416

  • [1] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究. 物理学报, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [2] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [3] 刘萌娇, 张新稳, 王炯, 秦雅博, 陈月花, 黄维. 非周期微纳结构增强有机发光二极管光耦合输出的研究进展. 物理学报, 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [4] 马婧, 刘冬冬, 王继成, 冯延. 基于金属狭缝阵列的各向异性偏振分束器. 物理学报, 2018, 67(9): 094102. doi: 10.7498/aps.67.20172292
    [5] 符民, 文尚胜, 夏云云, 向昌明, 马丙戌, 方方. GaN基通孔垂直结构的发光二极管失效分析. 物理学报, 2017, 66(4): 048501. doi: 10.7498/aps.66.048501
    [6] 刘云凤, 刘彬, 何兴道, 李淑静. 基于六角格子光子晶体波导的高效全光二极管设计. 物理学报, 2016, 65(6): 064207. doi: 10.7498/aps.65.064207
    [7] 康海燕, 胡辉勇, 王斌, 宣荣喜, 宋建军, 赵晨栋, 许小仓. Si/Ge/Si异质横向SPiN二极管固态等离子体解析模型. 物理学报, 2015, 64(23): 238501. doi: 10.7498/aps.64.238501
    [8] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率. 物理学报, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [9] 弓志娜, 云峰, 丁文, 张烨, 郭茂峰, 刘硕, 黄亚平, 刘浩, 王帅, 冯仑刚, 王江腾. 光致电化学法提高垂直结构发光二极管出光效率的研究. 物理学报, 2015, 64(1): 018501. doi: 10.7498/aps.64.018501
    [10] 张志刚, 董凤良, 张青川, 褚卫国, 仇康, 程腾, 高杰, 伍小平. 像素偏振片阵列制备及其在偏振图像增强中的应用. 物理学报, 2014, 63(18): 184204. doi: 10.7498/aps.63.184204
    [11] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [12] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究. 物理学报, 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [13] 张学智, 冯鸣, 张心正. 基于自相位调制效应的硅基中红外全光二极管. 物理学报, 2013, 62(2): 024201. doi: 10.7498/aps.62.024201
    [14] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应. 物理学报, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [15] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展. 物理学报, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [16] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [17] 李培丽, 黄德修, 张新亮, 朱光喜. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器. 物理学报, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [18] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
    [19] 夏连胜, 王 勐, 黄子平, 张开志, 石金水, 章林文, 邓建军. 强流电子二极管中阴极等离子体的膨胀. 物理学报, 2004, 53(10): 3435-3439. doi: 10.7498/aps.53.3435
    [20] 李铁城. KDP,ADP调制器中高斯光束的传播和消光比的理论. 物理学报, 1975, 24(4): 268-280. doi: 10.7498/aps.24.268
计量
  • 文章访问数:  4337
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-27
  • 修回日期:  2017-03-22
  • 刊出日期:  2017-06-05

/

返回文章
返回