搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤的三维可调胶体光子晶体

郭文华 王鸣 夏巍 戴丽华 崔恩营 倪海彬

引用本文:
Citation:

基于光纤的三维可调胶体光子晶体

郭文华, 王鸣, 夏巍, 戴丽华, 崔恩营, 倪海彬

Three-dimensional tunable colloidal photonic crystal self-assembled on the end face of an optical fiber

Guo Wen-Hua, Wang Ming, Xia Wei, Dai Li-Hua, Cui En-Ying, Ni Hai-Bin
PDF
导出引用
  • 用改进的垂直沉积法在光纤端面制备了高质量的SiO2胶体光子晶体,经过烧结、固化构成胶体光子晶体-光纤结构. 用扫描电子显微镜确定了样品为面心立方密排结构,其密排面平行于光纤基底表面. 利用全光纤传感网络测试了该胶体光子晶体,反射峰中心位于845 nm处,与Bragg理论计算值符合很好. 将该样品浸入不同折射率的液体中,反射光谱的峰值位置随着液体折射率的改变而发生偏移,近似呈线性关系,实现了峰位可调. 对于不同浓度引起的液体折射率的变化,基于光纤的胶体光子晶体结构也能够很好地分辨出来.
    High-quality three-dimensional nanostructure colloidal crystal-fiber structure is obtained by the modified vertical deposition method. The morphology of the colloidal crystal is examined by the scanning electron microscope, which illustrates that the (111) plane is parallel to the substrate of the fiber end face. The optical characterization of the colloidal crystal is also analyzed with an all-fiber network system. Reflection spectra show the existence of photonic band gap, which is located at 845 nm. As the liquid refractive index filled in the voids of the sample increases, the tunable wavelength of reflected light which is predicted by Bragg's equation with considering the effect of photonic band gap shows a good agreement with experimental results. Also, as the refractive index is changed because of different concentrations of solution, the colloidal photonic crystal-fiber system can also be distinguished by recording the shift of the maximum of Bragg reflection spectra.
    • 基金项目: 江苏省科技支撑计划(批准号: BE2008138)资助的课题.
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]
    [4]
    [5]

    Joannopoulos J D, Villeneuve P R, Fan S 1997 Nature 386 143

    [6]

    Painter O, Lee R K, Scherer A, Yariv A, OBrien J D, Dapkus P D, Kim I 1999 Science 284 1819

    [7]
    [8]
    [9]

    Campbell M, Sharp D N, Harrison M T 2000 Nature 404 53

    [10]
    [11]

    Reese C E, Guerrero C D, Jesse M W 2000 J. Colloid Interf. Sci. 232 76

    [12]

    Li M H, Ma Y, Xu L, Zhang Y, Ma F, Huang X F, Chen K J 2003 Acta Phys. Sin. 52 1302 (in Chinese) [李明海、马 懿、徐 岭、张 宇、马 飞、黄信凡、陈坤基 2003 物理学 报 52 1302]

    [13]
    [14]

    Wang J, Yuan C W, Huang Z B, Tang F Q 2004 Acta Phys. Sin. 53 3054 (in Chinese ) [汪 静、袁春伟、黄忠兵、唐芳琼 2004 物理学报 53 3054]

    [15]
    [16]

    Wang X D, Dong P, Yi G Y 2006 Acta Phys. Sin. 55 2092 (in Chinese) [王晓冬、董 鹏、仪桂云 2006 物理学报 55 2092]

    [17]
    [18]
    [19]

    Zhou Z, Zhao X S 2004 Langmuir 20 1524

    [20]
    [21]

    Jiang P, Bertone J F, Hwang K S 1999 Chem. Mater. 11 2132

    [22]

    Xia Y N, Gates B, Yin Y D 2000 Adv. Mater. 12 693

    [23]
    [24]
    [25]

    Wei Y M 2007 Chin. J. Comput. Phys. 25 483 (in Chinese) [韦以明 2007 计算物理 25 483]

    [26]

    Nair R V, Vijava R 2010 Prog. Quantum Electron. 34 89

    [27]
    [28]

    Frieda K, Vlad L S, Dan D 2003 Synth. Met. 137 993

    [29]
    [30]
    [31]

    Guo W H, Wang M, Yu P, Liu Q 2010 Chin. Opt. Lett. 8 515

    [32]

    Wong S, Kitaev V, Ozin G A 2003 J. Am. Chem. Soc. 125 15589

    [33]
    [34]
    [35]

    Ye Y H, Leblanc F, Hache A 2001 Appl. Phys. Lett. 78 52

    [36]
    [37]

    Woodcock L V 1997 Nature 385 141

    [38]

    Blaaderen A, Ruel R, Wiltzius P 1997 Nature 385 321

    [39]
    [40]

    Miguez H, Meseguer F, Lpez C, Mifsud A, Moya J S, Vzquez L 1997 Langmuir 13 6009

    [41]
  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]
    [4]
    [5]

    Joannopoulos J D, Villeneuve P R, Fan S 1997 Nature 386 143

    [6]

    Painter O, Lee R K, Scherer A, Yariv A, OBrien J D, Dapkus P D, Kim I 1999 Science 284 1819

    [7]
    [8]
    [9]

    Campbell M, Sharp D N, Harrison M T 2000 Nature 404 53

    [10]
    [11]

    Reese C E, Guerrero C D, Jesse M W 2000 J. Colloid Interf. Sci. 232 76

    [12]

    Li M H, Ma Y, Xu L, Zhang Y, Ma F, Huang X F, Chen K J 2003 Acta Phys. Sin. 52 1302 (in Chinese) [李明海、马 懿、徐 岭、张 宇、马 飞、黄信凡、陈坤基 2003 物理学 报 52 1302]

    [13]
    [14]

    Wang J, Yuan C W, Huang Z B, Tang F Q 2004 Acta Phys. Sin. 53 3054 (in Chinese ) [汪 静、袁春伟、黄忠兵、唐芳琼 2004 物理学报 53 3054]

    [15]
    [16]

    Wang X D, Dong P, Yi G Y 2006 Acta Phys. Sin. 55 2092 (in Chinese) [王晓冬、董 鹏、仪桂云 2006 物理学报 55 2092]

    [17]
    [18]
    [19]

    Zhou Z, Zhao X S 2004 Langmuir 20 1524

    [20]
    [21]

    Jiang P, Bertone J F, Hwang K S 1999 Chem. Mater. 11 2132

    [22]

    Xia Y N, Gates B, Yin Y D 2000 Adv. Mater. 12 693

    [23]
    [24]
    [25]

    Wei Y M 2007 Chin. J. Comput. Phys. 25 483 (in Chinese) [韦以明 2007 计算物理 25 483]

    [26]

    Nair R V, Vijava R 2010 Prog. Quantum Electron. 34 89

    [27]
    [28]

    Frieda K, Vlad L S, Dan D 2003 Synth. Met. 137 993

    [29]
    [30]
    [31]

    Guo W H, Wang M, Yu P, Liu Q 2010 Chin. Opt. Lett. 8 515

    [32]

    Wong S, Kitaev V, Ozin G A 2003 J. Am. Chem. Soc. 125 15589

    [33]
    [34]
    [35]

    Ye Y H, Leblanc F, Hache A 2001 Appl. Phys. Lett. 78 52

    [36]
    [37]

    Woodcock L V 1997 Nature 385 141

    [38]

    Blaaderen A, Ruel R, Wiltzius P 1997 Nature 385 321

    [39]
    [40]

    Miguez H, Meseguer F, Lpez C, Mifsud A, Moya J S, Vzquez L 1997 Langmuir 13 6009

    [41]
计量
  • 文章访问数:  3060
  • PDF下载量:  684
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-05
  • 修回日期:  2011-07-28
  • 刊出日期:  2011-06-05

基于光纤的三维可调胶体光子晶体

  • 1. 南京师范大学物理科学与技术学院,江苏省光电技术重点实验室,南京 210046;
  • 2. 常熟理工学院物理与电子工程学院,常熟 215500
    基金项目: 

    江苏省科技支撑计划(批准号: BE2008138)资助的课题.

摘要: 用改进的垂直沉积法在光纤端面制备了高质量的SiO2胶体光子晶体,经过烧结、固化构成胶体光子晶体-光纤结构. 用扫描电子显微镜确定了样品为面心立方密排结构,其密排面平行于光纤基底表面. 利用全光纤传感网络测试了该胶体光子晶体,反射峰中心位于845 nm处,与Bragg理论计算值符合很好. 将该样品浸入不同折射率的液体中,反射光谱的峰值位置随着液体折射率的改变而发生偏移,近似呈线性关系,实现了峰位可调. 对于不同浓度引起的液体折射率的变化,基于光纤的胶体光子晶体结构也能够很好地分辨出来.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回