搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤布拉格光栅辐射损伤及其对光谱特性的影响

马晶 车驰 于思源 谭丽英 周彦平 王健

引用本文:
Citation:

光纤布拉格光栅辐射损伤及其对光谱特性的影响

马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健

-radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics

Ma Jing, Che Chi, Yu Si-Yuan, Tan Li-Ying, Zhou Yan-Ping, Wang Jian
PDF
导出引用
  • 基于色心产生模型理论分析了电离辐射对光纤布拉格光栅的影响, 并推导出了光栅有效折射率变化与辐射剂量的函数关系式. 使用60Co 辐射源对光纤布拉格光栅进行了总剂量为1 106 rad的电离辐射实验, 实验结果与理论符合较好. 在辐射环境下, 光栅反射谱的峰值波长随着剂量增加向着长波方向移动, 由其计算所得的辐射致折射率变化规律与所得到的函数关系式相符. 该公式结合低剂量辐射实验可预测光栅在高剂量辐射下的性能变化, 对评估光栅产品抗辐射特性, 及筛选出性能较好产品有着实际应用价值.
    The ionizing radiation effects on fiber Bragg grating are theoretically analyzed based on the color center model. And the relationship between the radiation induced refractive index change and dose is deduced. Fiber Bragg grating sample are irradiated by ray with a total dose of 1 106 rad. Under radiation the reflected spectrum peak wavelength of FBG sample is red shifted, but the full width at half maximent and the reflectivity are not changed obviously. The experiment results accord well with our function. With the low level radiation experiment, this expression can screen the FBG samples and predict their performances under high level radiation.
      通信作者: 车驰, chiche.hit@gmail.com
      Corresponding author: Che Chi, chiche.hit@gmail.com
    [1]

    Marshall P W, Dale C J, Carts M A, Label K A 1994 IEEE Trans. Nucl. Sci. 41 1958

    [2]

    Marshall P W, Dale C J, Burke E A 1992 IEEE Trans. Nucl. Sci. 39 1982

    [3]

    Ott M N, Plante J, Shaw J, Garrison-Darrin M A 1997 World Aviation Congress Anaheim, USA, October 13–16, 1997 p975592

    [4]

    Gusarov A I, Doyle D B, Karafolas N, Berghmans F 2000 Phtotnics for Space Environments VII (USA: SPIE) p253

    [5]

    Ferdinand P, Magne S, Marty V, Rougeault S 1994 Optical Fiber Sensing and Systems in Nuclear Environment, Mol, Belgium, September 17, 1994 p11

    [6]

    Gusarov A I, Berghmans F, Deparis O 1999 IEEE Photo. Technol. Lett. 11 65

    [7]

    Gusarov A I, Fernandez A, Vssiliev S, Medvedkov O, Blondel M, Berghmans F 2002 Nucl. Instrum. Meth. B Beam 187 79

    [8]

    Girard S, Tortech B, Regnier E, Van Uffelen M, Gusarov A, Ouerdane Y, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Berghmans F, Schwank J R, Shanryfelt M R, Felix J A, Blackmore E W, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2426

    [9]

    Zhou C M, Zhang F, Ding L, Jiang D H 2011 Laser Optoelectron. Prog. 48 040601 (in Chinese) [周次明, 张方, 丁立, 姜德生 2011 激光与光电子学进展 48 040601]

    [10]

    Holmes-Siedle A, Adams L 2002 Handbook of Radiation Effects (New York: Oxford University Press) pp 311–326

    [11]

    Regnier E, Flammer I, Girard S, Gooijer F, Achten F, Kuyt G 2007 IEEE Trans. Nucl. Sci. 54 1115

    [12]

    Rusell P S, Poyntz-Wright L J, Hand D P 1991 Fiber Laser Sources and Amplifiers II, San Jose, USA, September 18, 1990 p126

    [13]

    Neustrnev V B 1994 J. Phys. Condens. Matt. 6 6901

    [14]

    Jiang H, Chen B X, Fu C S, Sui G R, Mamoru I 2010 Acta Phys. Sin. 59 7782 (in Chinese) [姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 物理学报 59 7782]

    [15]

    Xiao Z Y, Luo W Y, Wang T Y 2007 Acta Phys. Sin. 56 2731 (in Chinese) [肖中银, 罗文芸, 王廷云 2007 物理学报 56 2731]

    [16]

    Hand D P, Russell P St J 1990 Opt. Lett. 15 102

    [17]

    Fang S G, Zhang Q Y 1989 Physics of Color Center in Crystal (Shanghai: Shanghai Jiaotong University Press) pp 26–27 (in Chinese) [方书淦, 张启仁 1989 晶体色心固体物理学 (上海: 上海交通大学出版社) 第26—27页]

  • [1]

    Marshall P W, Dale C J, Carts M A, Label K A 1994 IEEE Trans. Nucl. Sci. 41 1958

    [2]

    Marshall P W, Dale C J, Burke E A 1992 IEEE Trans. Nucl. Sci. 39 1982

    [3]

    Ott M N, Plante J, Shaw J, Garrison-Darrin M A 1997 World Aviation Congress Anaheim, USA, October 13–16, 1997 p975592

    [4]

    Gusarov A I, Doyle D B, Karafolas N, Berghmans F 2000 Phtotnics for Space Environments VII (USA: SPIE) p253

    [5]

    Ferdinand P, Magne S, Marty V, Rougeault S 1994 Optical Fiber Sensing and Systems in Nuclear Environment, Mol, Belgium, September 17, 1994 p11

    [6]

    Gusarov A I, Berghmans F, Deparis O 1999 IEEE Photo. Technol. Lett. 11 65

    [7]

    Gusarov A I, Fernandez A, Vssiliev S, Medvedkov O, Blondel M, Berghmans F 2002 Nucl. Instrum. Meth. B Beam 187 79

    [8]

    Girard S, Tortech B, Regnier E, Van Uffelen M, Gusarov A, Ouerdane Y, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Berghmans F, Schwank J R, Shanryfelt M R, Felix J A, Blackmore E W, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2426

    [9]

    Zhou C M, Zhang F, Ding L, Jiang D H 2011 Laser Optoelectron. Prog. 48 040601 (in Chinese) [周次明, 张方, 丁立, 姜德生 2011 激光与光电子学进展 48 040601]

    [10]

    Holmes-Siedle A, Adams L 2002 Handbook of Radiation Effects (New York: Oxford University Press) pp 311–326

    [11]

    Regnier E, Flammer I, Girard S, Gooijer F, Achten F, Kuyt G 2007 IEEE Trans. Nucl. Sci. 54 1115

    [12]

    Rusell P S, Poyntz-Wright L J, Hand D P 1991 Fiber Laser Sources and Amplifiers II, San Jose, USA, September 18, 1990 p126

    [13]

    Neustrnev V B 1994 J. Phys. Condens. Matt. 6 6901

    [14]

    Jiang H, Chen B X, Fu C S, Sui G R, Mamoru I 2010 Acta Phys. Sin. 59 7782 (in Chinese) [姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 物理学报 59 7782]

    [15]

    Xiao Z Y, Luo W Y, Wang T Y 2007 Acta Phys. Sin. 56 2731 (in Chinese) [肖中银, 罗文芸, 王廷云 2007 物理学报 56 2731]

    [16]

    Hand D P, Russell P St J 1990 Opt. Lett. 15 102

    [17]

    Fang S G, Zhang Q Y 1989 Physics of Color Center in Crystal (Shanghai: Shanghai Jiaotong University Press) pp 26–27 (in Chinese) [方书淦, 张启仁 1989 晶体色心固体物理学 (上海: 上海交通大学出版社) 第26—27页]

  • [1] 党俊坡, 江秀娟, 唐振华. 光纤基底TiNi形状记忆合金薄膜制备工艺. 物理学报, 2022, 71(3): 030701. doi: 10.7498/aps.71.20211437
    [2] 党俊坡, 江秀娟, 唐振华. 光纤基底TiNi形状记忆合金薄膜制备工艺研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211437
    [3] 赵金宇, 杨剑群, 董磊, 李兴冀. 氢气浸泡辐照加速方法在3DG111器件上的应用及辐射损伤机理分析. 物理学报, 2019, 68(6): 068501. doi: 10.7498/aps.68.20181992
    [4] 周悦, 胡志远, 毕大炜, 武爱民. 硅基光电子器件的辐射效应研究进展. 物理学报, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [5] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理. 物理学报, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [6] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [7] 李多芳, 曹天光, 耿金鹏, 展永. 电离辐射致植物诱变效应的损伤-修复模型. 物理学报, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [8] 黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利. γ射线辐照对掺Yb光纤材料性能的影响. 物理学报, 2014, 63(20): 200201. doi: 10.7498/aps.63.200201
    [9] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究. 物理学报, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [10] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研究. 物理学报, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [11] 郭文华, 王鸣, 夏巍, 戴丽华, 崔恩营, 倪海彬. 基于光纤的三维可调胶体光子晶体. 物理学报, 2011, 60(12): 124213. doi: 10.7498/aps.60.124213
    [12] 林丽艳, 杜磊, 包军林, 何亮. 光电耦合器电离辐射损伤电流传输比1/f噪声表征. 物理学报, 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [13] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响. 物理学报, 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [14] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [15] 何宝平, 姚志斌. 互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究. 物理学报, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [16] 杨 磊, 李小英, 王宝善. 利用光纤中自发四波混频产生纠缠光子的实验装置. 物理学报, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] 颜森林. 光纤混沌双芯双向保密通信系统研究. 物理学报, 2008, 57(5): 2819-2826. doi: 10.7498/aps.57.2819
    [18] 颜森林. 混沌信号在光纤传输过程中的非线性演化. 物理学报, 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [19] 黄桂芹, 刘 楣, 陈凌孚. KMgF3晶体的色心和自陷态激子研究. 物理学报, 2005, 54(4): 1702-1706. doi: 10.7498/aps.54.1702
    [20] 刘廷禹, 张启仁, 庄松林. PbWO4晶体中铅空位相关的色心模型. 物理学报, 2005, 54(2): 863-867. doi: 10.7498/aps.54.863
计量
  • 文章访问数:  5421
  • PDF下载量:  716
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-24
  • 修回日期:  2011-06-27
  • 刊出日期:  2012-03-05

光纤布拉格光栅辐射损伤及其对光谱特性的影响

  • 1. 哈尔滨工业大学 可调谐激光(气体)技术国防科技重点实验室, 哈尔滨, 150001
  • 通信作者: 车驰, chiche.hit@gmail.com

摘要: 基于色心产生模型理论分析了电离辐射对光纤布拉格光栅的影响, 并推导出了光栅有效折射率变化与辐射剂量的函数关系式. 使用60Co 辐射源对光纤布拉格光栅进行了总剂量为1 106 rad的电离辐射实验, 实验结果与理论符合较好. 在辐射环境下, 光栅反射谱的峰值波长随着剂量增加向着长波方向移动, 由其计算所得的辐射致折射率变化规律与所得到的函数关系式相符. 该公式结合低剂量辐射实验可预测光栅在高剂量辐射下的性能变化, 对评估光栅产品抗辐射特性, 及筛选出性能较好产品有着实际应用价值.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回