搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢气浸泡辐照加速方法在3DG111器件上的应用及辐射损伤机理分析

赵金宇 杨剑群 董磊 李兴冀

引用本文:
Citation:

氢气浸泡辐照加速方法在3DG111器件上的应用及辐射损伤机理分析

赵金宇, 杨剑群, 董磊, 李兴冀

Hydrogen soaking irradiation acceleration method: application to and damage mechanism analysis on 3DG111 transistors

Zhao Jin-Yu, Yang Jian-Qun, Dong Lei, Li Xing-Ji
PDF
HTML
导出引用
  • 本文以60Co为辐照源, 针对3DG111型晶体管, 利用半导体参数分析仪和深能级缺陷瞬态谱仪, 研究高/低剂量率和有/无氢气浸泡条件下, 电性能和深能级缺陷的演化规律. 试验结果表明, 与高剂量率辐照相比, 低剂量率辐照条件下, 3DG111型晶体管的电流增益退化更加严重, 这说明该器件出现了明显的低剂量率增强效应; 无论是高剂量率还是低剂量率辐照条件下, 3DG111晶体管的辐射损伤缺陷均是氧化物正电荷和界面态陷阱, 并且低剂量率条件下, 缺陷能级较深; 氢气浸泡后在高剂量率辐照条件下, 与未进行氢气处理的器件相比, 辐射损伤程度明显加剧, 且与低剂量率辐照条件下器件的损伤程度相同, 缺陷数量、种类及能级也相同. 因此, 氢气浸泡处理可以作为低剂量率辐射损伤增强效应加速评估方法的有效手段.
    Bipolar devices are extremely sensitive to ionization effects, and their low dose rate radiation damage is more serious than their high dose rate radiation damage, which phenomenon is especially named enhanced low dose rate sensitivity. In the actual space radiation environment, the radiation dose rate of the device is extremely low. Currently, the enhanced low dose rate sensitivity effect has become a key factor of evaluating the reliability of spacecraft and its electronic systems, due to the fact that the low dose rate irradiation test needs longer time. The method to speed up the test on the ground is one of the hottest topics in this research area. In recent years, some researches have suggested that the use of hydrogen immersion irradiation for accelerating the test can simulate low dose rate radiation damage to some extent, but the damage mechanism has not been analyzed in detail. In this paper, the mechanisms of electrical properties and deep level defects for the 3DG111 transistor by 60Co gamma ray under high and low dose rates in the cases with and without hydrogen are investigated. In order to analyze the damage mechanism of bipolar junction transistor, the excess base current and deep level transient spectrum are measured by using semiconductor parameter analyzer and deep level transient spectroscopy. The experimental results show that the current gain degradation of 3DG111 transistor is more serious under low dose rate radiation than under high dose rate radiation, at the same time, the excess base current of transistor increases significantly. This shows that in the device there appears the enhanced low dose rate sensitivity. Under both high dose rate radiation and low dose rate irradiation, the radiation damage defects are the traps for both oxide positive charge and interface state. Under the low dose rate irradiation, there are two main reasons for the increase in transistor damage. First, the oxide charge concentration increases under low dose rate irradiation, and the oxide charge and interface state energy levels move toward the middle band. Eventually, the space charge region recombination of the transistor is intensified, and thus causing the excessive base current of the transistor to increase and transistor performance to degrade. The comparison shows that the number and type of defects under the high dose rate irradiation are the same as those under the low dose rate irradiation. Based on the analysis, the hydrogen treatment can be used as an effective method of accelerating the assessment of radiation damage enhancement effect at low dose rates.
      通信作者: 李兴冀, lxj0218@hit.edu.cn
    • 基金项目: 科学挑战专题(批准号: TZ2018004)和模拟集成电路重点实验室基金(批准号: 6142802WD201803)资助的课题.
      Corresponding author: Li Xing-Ji, lxj0218@hit.edu.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2018004) and the Foundation of Science and Technology on Analog Integrated Circuit Laboratory, China (Grant No. 6142802WD201803).
    [1]

    Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505Google Scholar

    [2]

    Enlow E W, Pease R L, Combs W 1991 IEEE Trans. Nucl. Sci. 38 1342Google Scholar

    [3]

    翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 20 088501Google Scholar

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin. 20 088501Google Scholar

    [4]

    王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 物理学报 60 096104Google Scholar

    Wang Y Y, Lu W, Ren D Y, Guo Q, Yu X F, He C F, G B 2011 Acta Phys. Sin. 60 096104Google Scholar

    [5]

    姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙 2015 物理学报 64 136103Google Scholar

    Jiang K, Lu W, Hu T L, Wang X, Guo Q, He C F, Liu M H, Li X L 2015 Acta Phys. Sin. 64 136103Google Scholar

    [6]

    Bi J S, Han Z S, Zhang X E, McCurdy M W, Reed R A, Schrimpf R D, Fleetwood D M, Alles M L, Weller R A, Linten D, Jurczak M, Fantini A 2013 IEEE Trans. Nucl. Sci. 60 4540Google Scholar

    [7]

    Turflinger T L, Campbell, A B, Schmeichel W M, Walters R J, Krieg J E, Titus J L, Reeves M, Marshall P W, Pease R L 2003 IEEE Trans. Nucl. Sci. 50 2328Google Scholar

    [8]

    Harris R D, Mcclure S S, Rax B G, Evans, R W, Jun I 2008 IEEE Trans. Nucl. Sci. 55 3088Google Scholar

    [9]

    刘敏波, 陈伟, 姚志斌, 黄绍艳, 何宝平, 盛江坤, 肖志刚, 王祖军 2014 强激光与粒子束 26 214

    Liu M B, Chen W, Yao Z B, Huang S Y, He B P, Sheng J K, Xiao Z G, Wang Z J 2014 High Power Laser and Particle Beams 26 214

    [10]

    马武英, 陆妩, 郭旗, 吴雪, 孙静, 邓伟, 王信, 吴正新 2014 原子能科学技术 48 2170Google Scholar

    Ma Y W, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X, Wu Z X 2014 Atomic Energy Science and Technology 48 2170Google Scholar

    [11]

    陆妩, 任迪远, 郑玉展, 王义元, 郭旗, 余学峰 2009 原子能科学技术 43 769

    Lu W, Ren D Y, Zheng Y Z, Wang Y Y, Guo Q, Yu X F 2009 Atomic Energy Science and Technology 43 769

    [12]

    王先明, 刘楚湘, 艾尔肯·斯迪克 2007 核电子学与探测技术 27 1139Google Scholar

    Wang X M, Liu C X, Sidike A 2007 Nuclear Electronics and Detection Technology 27 1139Google Scholar

    [13]

    Li X L, Lu W, Wang X, Yu X, Guo Q, Sun J, Liu M H, Yao S, Wei X Y, He C F 2018 Chin. Phys. B 27 036102Google Scholar

    [14]

    李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 物理学报 67 096101Google Scholar

    Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar

    [15]

    刘方圆 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu F Y 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [16]

    李兴冀, 陈朝基, 杨剑群, 刘超铭, 马国亮 2017 太赫兹科学与电子信息学报 15 690Google Scholar

    Li X J, Chen C J, Yang J Q, Liu C M, Ma G L 2017 J. Terahertz Sci. Electron. Inform. Technol. 15 690Google Scholar

    [17]

    栾晓楠 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Luan X N 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A 1993 IEEE Trans. Nucl. Sci. 40 1276Google Scholar

    [19]

    郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 物理学报 58 5560Google Scholar

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5560Google Scholar

    [20]

    马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101Google Scholar

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar

    [21]

    Liu C M, Li X J, Yang J Q, Bollmann J 2014 Nucl. Instrum. Meth. Phys. Res., Sect. A 735 462Google Scholar

    [22]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158Google Scholar

    [23]

    Chen X J, Barnaby H J, Adell P, Pease R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar

    [24]

    Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L, Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986Google Scholar

    [25]

    姜平国, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801Google Scholar

    Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801Google Scholar

    [26]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203Google Scholar

    [27]

    Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D, Pantelides S T 2002 Phys. Rev. Lett. 89 285505Google Scholar

    [28]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby J H, Holbert K E 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar

  • 图 1  开帽处理后经$\gamma $射线辐照晶体管电流增益倒数变化量与未处理直接辐照对比

    Fig. 1.  Comparison of $\Delta (1/\beta )$ of $\gamma $-ray irradiated transistor after open cap treatment with untreated.

    图 2  高剂量率辐照条件下未经氢气浸泡的晶体管的Gummel曲线 (a)基极电流; (b)集电极电流

    Fig. 2.  Gummel curve of a transistor that has not been treated with hydrogen at high dose rates: (a) Base current; (b) collector current.

    图 3  氢气浸泡再经$\gamma $射线辐照后晶体管电流增益倒数变化量与未经处理辐照样品对比

    Fig. 3.  Comparison of $\varDelta (1/\beta )$ with/without hydrogen treated sample under $\gamma $-ray irradiated.

    图 4  高低剂量率辐照条件下3DG111晶体管过剩基极电流对比

    Fig. 4.  Comparison of excess base current of 3DG111 transistors at high and low dose rates.

    图 5  氢气浸泡预处理与未经处理晶体管辐照后过剩基极电流对比

    Fig. 5.  Comparison of excess base current of a transistor after irradiation with/without hydrogen-immersion pretreatment.

    图 6  氢气浸泡预处理与未经处理晶体管辐照后DLTS曲线对比

    Fig. 6.  Comparison of DLTS curves of a transistor with/without hydrogen-immersion pretreatment.

    图 7  辐照中的SiO2中的空穴传输、俘获和质子释放的示意图[24]

    Fig. 7.  Schematic illustration of hole transport, trapping and proton release in SiO2 irradiated[24].

    表 1  氢气浸泡预处理与未经处理晶体管辐照后缺陷参数对比

    Table 1.  Comparison of defect parameters of a transistor with/without hydrogen-immersion pretreatment.

    处理条件氧化物电荷界面态
    能级位置
    ECET/eV
    俘获截面
    $\sigma $/cm2
    缺陷浓度
    NT/cm–3
    能级位置
    ECET/ev
    俘获截面
    $\sigma $/cm2
    缺陷浓度
    NT/cm–3
    未经处理高剂量率0.0232.16 × 10–239.17 × 10120.7411.18 × 10–154.03 × 1013
    氢气浸泡高剂量率0.1527.13 × 10–182.06 × 10130.6487.40 × 10–172.41 × 1013
    未经处理低剂量率0.1527.12 × 10–182.06 × 10130.6497.42 × 10–172.42 × 1013
    下载: 导出CSV
  • [1]

    Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505Google Scholar

    [2]

    Enlow E W, Pease R L, Combs W 1991 IEEE Trans. Nucl. Sci. 38 1342Google Scholar

    [3]

    翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 20 088501Google Scholar

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin. 20 088501Google Scholar

    [4]

    王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 物理学报 60 096104Google Scholar

    Wang Y Y, Lu W, Ren D Y, Guo Q, Yu X F, He C F, G B 2011 Acta Phys. Sin. 60 096104Google Scholar

    [5]

    姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙 2015 物理学报 64 136103Google Scholar

    Jiang K, Lu W, Hu T L, Wang X, Guo Q, He C F, Liu M H, Li X L 2015 Acta Phys. Sin. 64 136103Google Scholar

    [6]

    Bi J S, Han Z S, Zhang X E, McCurdy M W, Reed R A, Schrimpf R D, Fleetwood D M, Alles M L, Weller R A, Linten D, Jurczak M, Fantini A 2013 IEEE Trans. Nucl. Sci. 60 4540Google Scholar

    [7]

    Turflinger T L, Campbell, A B, Schmeichel W M, Walters R J, Krieg J E, Titus J L, Reeves M, Marshall P W, Pease R L 2003 IEEE Trans. Nucl. Sci. 50 2328Google Scholar

    [8]

    Harris R D, Mcclure S S, Rax B G, Evans, R W, Jun I 2008 IEEE Trans. Nucl. Sci. 55 3088Google Scholar

    [9]

    刘敏波, 陈伟, 姚志斌, 黄绍艳, 何宝平, 盛江坤, 肖志刚, 王祖军 2014 强激光与粒子束 26 214

    Liu M B, Chen W, Yao Z B, Huang S Y, He B P, Sheng J K, Xiao Z G, Wang Z J 2014 High Power Laser and Particle Beams 26 214

    [10]

    马武英, 陆妩, 郭旗, 吴雪, 孙静, 邓伟, 王信, 吴正新 2014 原子能科学技术 48 2170Google Scholar

    Ma Y W, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X, Wu Z X 2014 Atomic Energy Science and Technology 48 2170Google Scholar

    [11]

    陆妩, 任迪远, 郑玉展, 王义元, 郭旗, 余学峰 2009 原子能科学技术 43 769

    Lu W, Ren D Y, Zheng Y Z, Wang Y Y, Guo Q, Yu X F 2009 Atomic Energy Science and Technology 43 769

    [12]

    王先明, 刘楚湘, 艾尔肯·斯迪克 2007 核电子学与探测技术 27 1139Google Scholar

    Wang X M, Liu C X, Sidike A 2007 Nuclear Electronics and Detection Technology 27 1139Google Scholar

    [13]

    Li X L, Lu W, Wang X, Yu X, Guo Q, Sun J, Liu M H, Yao S, Wei X Y, He C F 2018 Chin. Phys. B 27 036102Google Scholar

    [14]

    李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 物理学报 67 096101Google Scholar

    Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar

    [15]

    刘方圆 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu F Y 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [16]

    李兴冀, 陈朝基, 杨剑群, 刘超铭, 马国亮 2017 太赫兹科学与电子信息学报 15 690Google Scholar

    Li X J, Chen C J, Yang J Q, Liu C M, Ma G L 2017 J. Terahertz Sci. Electron. Inform. Technol. 15 690Google Scholar

    [17]

    栾晓楠 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Luan X N 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A 1993 IEEE Trans. Nucl. Sci. 40 1276Google Scholar

    [19]

    郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 物理学报 58 5560Google Scholar

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5560Google Scholar

    [20]

    马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101Google Scholar

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar

    [21]

    Liu C M, Li X J, Yang J Q, Bollmann J 2014 Nucl. Instrum. Meth. Phys. Res., Sect. A 735 462Google Scholar

    [22]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158Google Scholar

    [23]

    Chen X J, Barnaby H J, Adell P, Pease R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar

    [24]

    Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L, Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986Google Scholar

    [25]

    姜平国, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801Google Scholar

    Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801Google Scholar

    [26]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203Google Scholar

    [27]

    Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D, Pantelides S T 2002 Phys. Rev. Lett. 89 285505Google Scholar

    [28]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby J H, Holbert K E 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar

  • [1] 缑石龙, 马武英, 姚志斌, 何宝平, 盛江坤, 薛院院, 潘琛. 基于栅控横向PNP双极晶体管的氢氛围中辐照损伤机制. 物理学报, 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [2] 董磊, 杨剑群, 甄兆丰, 李兴冀. 预加温处理对双极晶体管过剩基极电流理想因子的影响机制. 物理学报, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [3] 周悦, 胡志远, 毕大炜, 武爱民. 硅基光电子器件的辐射效应研究进展. 物理学报, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [4] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理. 物理学报, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [5] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [6] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [7] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [8] 李多芳, 曹天光, 耿金鹏, 展永. 电离辐射致植物诱变效应的损伤-修复模型. 物理学报, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [9] 马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅. 双极电压比较器电离辐射损伤及剂量率效应分析. 物理学报, 2014, 63(2): 026101. doi: 10.7498/aps.63.026101
    [10] 石磊, 钱沐杨, 肖坤祥, 黎明. 低气压条件下氢气潘宁放电的模拟分析. 物理学报, 2013, 62(17): 175205. doi: 10.7498/aps.62.175205
    [11] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究. 物理学报, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [12] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研究. 物理学报, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [13] 刘华敏, 范永胜, 田时海, 周维, 陈旭. 分子动力学模拟压水反应堆中氢气对水的影响. 物理学报, 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [14] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响. 物理学报, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [15] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [16] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [17] 何宝平, 姚志斌. 互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究. 物理学报, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [18] 郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发. 不同发射极面积npn晶体管高低剂量率辐射损伤特性. 物理学报, 2009, 58(8): 5572-5577. doi: 10.7498/aps.58.5572
    [19] 李忠贺, 刘红侠, 郝 跃. 超深亚微米PMOS器件的NBTI退化机理. 物理学报, 2006, 55(2): 820-824. doi: 10.7498/aps.55.820
    [20] 晁明举, 丁 佩, 张红瑞, 郭茂田, 梁二军. 氢气与氮气对硼碳氮纳米管生长的影响. 物理学报, 2004, 53(3): 936-941. doi: 10.7498/aps.53.936
计量
  • 文章访问数:  7843
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-08
  • 修回日期:  2019-01-09
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回