-
本文以60Co为辐照源, 针对3DG111型晶体管, 利用半导体参数分析仪和深能级缺陷瞬态谱仪, 研究高/低剂量率和有/无氢气浸泡条件下, 电性能和深能级缺陷的演化规律. 试验结果表明, 与高剂量率辐照相比, 低剂量率辐照条件下, 3DG111型晶体管的电流增益退化更加严重, 这说明该器件出现了明显的低剂量率增强效应; 无论是高剂量率还是低剂量率辐照条件下, 3DG111晶体管的辐射损伤缺陷均是氧化物正电荷和界面态陷阱, 并且低剂量率条件下, 缺陷能级较深; 氢气浸泡后在高剂量率辐照条件下, 与未进行氢气处理的器件相比, 辐射损伤程度明显加剧, 且与低剂量率辐照条件下器件的损伤程度相同, 缺陷数量、种类及能级也相同. 因此, 氢气浸泡处理可以作为低剂量率辐射损伤增强效应加速评估方法的有效手段.
-
关键词:
- 双极型晶体管 /
- 氢气 /
- 电离辐射 /
- 低剂量率辐射损伤增强效应
Bipolar devices are extremely sensitive to ionization effects, and their low dose rate radiation damage is more serious than their high dose rate radiation damage, which phenomenon is especially named enhanced low dose rate sensitivity. In the actual space radiation environment, the radiation dose rate of the device is extremely low. Currently, the enhanced low dose rate sensitivity effect has become a key factor of evaluating the reliability of spacecraft and its electronic systems, due to the fact that the low dose rate irradiation test needs longer time. The method to speed up the test on the ground is one of the hottest topics in this research area. In recent years, some researches have suggested that the use of hydrogen immersion irradiation for accelerating the test can simulate low dose rate radiation damage to some extent, but the damage mechanism has not been analyzed in detail. In this paper, the mechanisms of electrical properties and deep level defects for the 3DG111 transistor by 60Co gamma ray under high and low dose rates in the cases with and without hydrogen are investigated. In order to analyze the damage mechanism of bipolar junction transistor, the excess base current and deep level transient spectrum are measured by using semiconductor parameter analyzer and deep level transient spectroscopy. The experimental results show that the current gain degradation of 3DG111 transistor is more serious under low dose rate radiation than under high dose rate radiation, at the same time, the excess base current of transistor increases significantly. This shows that in the device there appears the enhanced low dose rate sensitivity. Under both high dose rate radiation and low dose rate irradiation, the radiation damage defects are the traps for both oxide positive charge and interface state. Under the low dose rate irradiation, there are two main reasons for the increase in transistor damage. First, the oxide charge concentration increases under low dose rate irradiation, and the oxide charge and interface state energy levels move toward the middle band. Eventually, the space charge region recombination of the transistor is intensified, and thus causing the excessive base current of the transistor to increase and transistor performance to degrade. The comparison shows that the number and type of defects under the high dose rate irradiation are the same as those under the low dose rate irradiation. Based on the analysis, the hydrogen treatment can be used as an effective method of accelerating the assessment of radiation damage enhancement effect at low dose rates.-
Keywords:
- bipolar junction transistor /
- hydrogen /
- ionizing damage /
- enhanced low dose rate sensitivity
[1] Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505Google Scholar
[2] Enlow E W, Pease R L, Combs W 1991 IEEE Trans. Nucl. Sci. 38 1342Google Scholar
[3] 翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 20 088501Google Scholar
Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin. 20 088501Google Scholar
[4] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 物理学报 60 096104Google Scholar
Wang Y Y, Lu W, Ren D Y, Guo Q, Yu X F, He C F, G B 2011 Acta Phys. Sin. 60 096104Google Scholar
[5] 姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙 2015 物理学报 64 136103Google Scholar
Jiang K, Lu W, Hu T L, Wang X, Guo Q, He C F, Liu M H, Li X L 2015 Acta Phys. Sin. 64 136103Google Scholar
[6] Bi J S, Han Z S, Zhang X E, McCurdy M W, Reed R A, Schrimpf R D, Fleetwood D M, Alles M L, Weller R A, Linten D, Jurczak M, Fantini A 2013 IEEE Trans. Nucl. Sci. 60 4540Google Scholar
[7] Turflinger T L, Campbell, A B, Schmeichel W M, Walters R J, Krieg J E, Titus J L, Reeves M, Marshall P W, Pease R L 2003 IEEE Trans. Nucl. Sci. 50 2328Google Scholar
[8] Harris R D, Mcclure S S, Rax B G, Evans, R W, Jun I 2008 IEEE Trans. Nucl. Sci. 55 3088Google Scholar
[9] 刘敏波, 陈伟, 姚志斌, 黄绍艳, 何宝平, 盛江坤, 肖志刚, 王祖军 2014 强激光与粒子束 26 214
Liu M B, Chen W, Yao Z B, Huang S Y, He B P, Sheng J K, Xiao Z G, Wang Z J 2014 High Power Laser and Particle Beams 26 214
[10] 马武英, 陆妩, 郭旗, 吴雪, 孙静, 邓伟, 王信, 吴正新 2014 原子能科学技术 48 2170Google Scholar
Ma Y W, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X, Wu Z X 2014 Atomic Energy Science and Technology 48 2170Google Scholar
[11] 陆妩, 任迪远, 郑玉展, 王义元, 郭旗, 余学峰 2009 原子能科学技术 43 769
Lu W, Ren D Y, Zheng Y Z, Wang Y Y, Guo Q, Yu X F 2009 Atomic Energy Science and Technology 43 769
[12] 王先明, 刘楚湘, 艾尔肯·斯迪克 2007 核电子学与探测技术 27 1139Google Scholar
Wang X M, Liu C X, Sidike A 2007 Nuclear Electronics and Detection Technology 27 1139Google Scholar
[13] Li X L, Lu W, Wang X, Yu X, Guo Q, Sun J, Liu M H, Yao S, Wei X Y, He C F 2018 Chin. Phys. B 27 036102Google Scholar
[14] 李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 物理学报 67 096101Google Scholar
Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar
[15] 刘方圆 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Liu F Y 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[16] 李兴冀, 陈朝基, 杨剑群, 刘超铭, 马国亮 2017 太赫兹科学与电子信息学报 15 690Google Scholar
Li X J, Chen C J, Yang J Q, Liu C M, Ma G L 2017
J. Terahertz Sci. Electron. Inform. Technol. 15 690Google Scholar [17] 栾晓楠 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Luan X N 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[18] Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A 1993 IEEE Trans. Nucl. Sci. 40 1276Google Scholar
[19] 郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 物理学报 58 5560Google Scholar
Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5560Google Scholar
[20] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101Google Scholar
Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar
[21] Liu C M, Li X J, Yang J Q, Bollmann J 2014 Nucl. Instrum. Meth. Phys. Res., Sect. A 735 462Google Scholar
[22] Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158Google Scholar
[23] Chen X J, Barnaby H J, Adell P, Pease R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar
[24] Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L, Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986Google Scholar
[25] 姜平国, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801Google Scholar
Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801Google Scholar
[26] Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203Google Scholar
[27] Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D, Pantelides S T 2002 Phys. Rev. Lett. 89 285505Google Scholar
[28] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby J H, Holbert K E 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar
-
表 1 氢气浸泡预处理与未经处理晶体管辐照后缺陷参数对比
Table 1. Comparison of defect parameters of a transistor with/without hydrogen-immersion pretreatment.
处理条件 氧化物电荷 界面态 能级位置
EC – ET/eV俘获截面
$\sigma $/cm2缺陷浓度
NT/cm–3能级位置
EC – ET/ev俘获截面
$\sigma $/cm2缺陷浓度
NT/cm–3未经处理高剂量率 0.023 2.16 × 10–23 9.17 × 1012 0.741 1.18 × 10–15 4.03 × 1013 氢气浸泡高剂量率 0.152 7.13 × 10–18 2.06 × 1013 0.648 7.40 × 10–17 2.41 × 1013 未经处理低剂量率 0.152 7.12 × 10–18 2.06 × 1013 0.649 7.42 × 10–17 2.42 × 1013 -
[1] Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505Google Scholar
[2] Enlow E W, Pease R L, Combs W 1991 IEEE Trans. Nucl. Sci. 38 1342Google Scholar
[3] 翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 20 088501Google Scholar
Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin. 20 088501Google Scholar
[4] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 物理学报 60 096104Google Scholar
Wang Y Y, Lu W, Ren D Y, Guo Q, Yu X F, He C F, G B 2011 Acta Phys. Sin. 60 096104Google Scholar
[5] 姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙 2015 物理学报 64 136103Google Scholar
Jiang K, Lu W, Hu T L, Wang X, Guo Q, He C F, Liu M H, Li X L 2015 Acta Phys. Sin. 64 136103Google Scholar
[6] Bi J S, Han Z S, Zhang X E, McCurdy M W, Reed R A, Schrimpf R D, Fleetwood D M, Alles M L, Weller R A, Linten D, Jurczak M, Fantini A 2013 IEEE Trans. Nucl. Sci. 60 4540Google Scholar
[7] Turflinger T L, Campbell, A B, Schmeichel W M, Walters R J, Krieg J E, Titus J L, Reeves M, Marshall P W, Pease R L 2003 IEEE Trans. Nucl. Sci. 50 2328Google Scholar
[8] Harris R D, Mcclure S S, Rax B G, Evans, R W, Jun I 2008 IEEE Trans. Nucl. Sci. 55 3088Google Scholar
[9] 刘敏波, 陈伟, 姚志斌, 黄绍艳, 何宝平, 盛江坤, 肖志刚, 王祖军 2014 强激光与粒子束 26 214
Liu M B, Chen W, Yao Z B, Huang S Y, He B P, Sheng J K, Xiao Z G, Wang Z J 2014 High Power Laser and Particle Beams 26 214
[10] 马武英, 陆妩, 郭旗, 吴雪, 孙静, 邓伟, 王信, 吴正新 2014 原子能科学技术 48 2170Google Scholar
Ma Y W, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X, Wu Z X 2014 Atomic Energy Science and Technology 48 2170Google Scholar
[11] 陆妩, 任迪远, 郑玉展, 王义元, 郭旗, 余学峰 2009 原子能科学技术 43 769
Lu W, Ren D Y, Zheng Y Z, Wang Y Y, Guo Q, Yu X F 2009 Atomic Energy Science and Technology 43 769
[12] 王先明, 刘楚湘, 艾尔肯·斯迪克 2007 核电子学与探测技术 27 1139Google Scholar
Wang X M, Liu C X, Sidike A 2007 Nuclear Electronics and Detection Technology 27 1139Google Scholar
[13] Li X L, Lu W, Wang X, Yu X, Guo Q, Sun J, Liu M H, Yao S, Wei X Y, He C F 2018 Chin. Phys. B 27 036102Google Scholar
[14] 李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 物理学报 67 096101Google Scholar
Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar
[15] 刘方圆 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Liu F Y 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[16] 李兴冀, 陈朝基, 杨剑群, 刘超铭, 马国亮 2017 太赫兹科学与电子信息学报 15 690Google Scholar
Li X J, Chen C J, Yang J Q, Liu C M, Ma G L 2017
J. Terahertz Sci. Electron. Inform. Technol. 15 690Google Scholar [17] 栾晓楠 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Luan X N 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[18] Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A 1993 IEEE Trans. Nucl. Sci. 40 1276Google Scholar
[19] 郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 物理学报 58 5560Google Scholar
Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5560Google Scholar
[20] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101Google Scholar
Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar
[21] Liu C M, Li X J, Yang J Q, Bollmann J 2014 Nucl. Instrum. Meth. Phys. Res., Sect. A 735 462Google Scholar
[22] Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158Google Scholar
[23] Chen X J, Barnaby H J, Adell P, Pease R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar
[24] Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L, Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986Google Scholar
[25] 姜平国, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801Google Scholar
Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801Google Scholar
[26] Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203Google Scholar
[27] Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D, Pantelides S T 2002 Phys. Rev. Lett. 89 285505Google Scholar
[28] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby J H, Holbert K E 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar
计量
- 文章访问数: 7843
- PDF下载量: 58
- 被引次数: 0