搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲抽运光啁啾对全光纤量子关联光子对纯度的影响

王堃 崔亮 张秀婷 李小英

引用本文:
Citation:

脉冲抽运光啁啾对全光纤量子关联光子对纯度的影响

王堃, 崔亮, 张秀婷, 李小英

Influence of pump chirp on the purity of an all fiber source of correlated photon pairs

Wang Kun, Cui Liang, Zhang Xiu-Ting, Li Xiao-Ying
PDF
导出引用
  • 信号与闲置光子波长均为1550 nm 通信波段的全光纤关联光子对源, 具有低成本以及可与现有光纤网络低损耗连接的特点. 进一步优化其纯度, 将有助于提高这种量子光源的实用化程度.当抽运脉冲光在光纤中传输时, 由于色散和Kerr非线性效应的影响, 会不可避免地引入啁啾. 本文利用脉冲激光抽运零色散位移光纤, 研究了抽运光啁啾对关联光子对纯度的影响. 结果表明, 通信波段小失谐关联光子对的纯度随啁啾的增大而下降. 若采用变换极限的锁模激光为抽运源, 将有助于抑制Raman散射对自发四波混频的影响, 提高光子对的纯度.
    The all fiber sources of photon pairs in the 1550 nm telecom band have the advantages of low cost and compatibility with the fiber network. Further improving the purity will improve the practicality of the quantum light sources. For the pulsed pump field propagating through the optical fiber, a certain amount of chirp will be inevitably induced due to the effects of chromatic of dispersion and Kerr nonlinearity, but its influence on the purity has not been studied yet. In this paper, using photon pairs produced by the spontaneous four wave mixing in dispersion shifted fiber, we study the influence of pump chirp on the purity of photon pairs by varying the chirp of the pulsed pump. For the pump with a given bandwidth, our results demonstrate that the purity of photon pairs having a certain production rate, decreases with the increase of the absolute quantity of pump chirp. Therefore, the purity of the photon pairs with relatively small detuning can be improved by using the transform limited pump pulses due to the suppressed Raman scattering.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB923101)和国家自然科学基金(批准号: 11074186)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB923101) and the National Natural Science Foundation of China (Grant No. 11074186).
    [1]

    Fiorentino M, Voss P L, Sharping J E, Kumar P 2002 IEEE Photon. Technol. Lett. 27 491

    [2]

    Rarity J G, Fulconis J, Duligall J 2005 Opt. Express 13 534

    [3]

    Fan J, Dogariu A, Wang L J 2005 Opt. Lett. 30 1530

    [4]

    Lim H C, Wang D, Tanemura T, Katoh K, Kikuchi K 2006 IEEE LEOS Topical Meeting Quebec City, Canada, July 17-19, 2006 paper TuB2.4

    [5]

    Li X Y, Voss P L, Sharping J E, Kumar P 2005 Phys. Rev. Lett. 94 053601

    [6]

    Takesue H, Inoue K 2005 Phy. Rev. A 72 041804(R)

    [7]

    Yang L, Ma X X, Guo X S, Cui L, Li X Y 2011 Phys. Rev. A 83 053843

    [8]

    Goldschmidt E A, Eisaman M D, Fan J, Polyakov S V, Migdall A 2008 Phys. Rev. A 78 013844

    [9]

    Chen J, Altepeter J B, Medic M, Lee K F, Gokden B, Hadfield R H, Nam S W, Kumar P 2008 Phys. Rev. Lett. 100 149903

    [10]

    Cui L, Li X Y, Zhao N B 2012 Acta Opt. Sin. 32 0119002 (in Chinese) [崔亮, 李小英, 赵宁波 2012 光学学报 32 0119002]

    [11]

    Yang L, Wang B S, Li X Y 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 王宝善, 李小英 2008 物理学报 57 4933]

    [12]

    Li X Y, Chen J, Voss P L 2004 Opt. Express 12 3737

    [13]

    Li X Y, Voss P L, Chen J, Lee K F, Kumar P 2005 Opt. Express 13 2236

    [14]

    Takesue H, Inoue K 2005 Opt. Express 13 7832

    [15]

    Ma X X, Yang L, Guo X S 2011 Opt. Commun. 284 4558

    [16]

    Ma X X, Li X Y, Cui L, Guo X S, Yang L 2011 Phys. Rev. A 84 023829

    [17]

    Cui L, Li X Y, Zhao N B 2012 New J. Phys. 14 123001

  • [1]

    Fiorentino M, Voss P L, Sharping J E, Kumar P 2002 IEEE Photon. Technol. Lett. 27 491

    [2]

    Rarity J G, Fulconis J, Duligall J 2005 Opt. Express 13 534

    [3]

    Fan J, Dogariu A, Wang L J 2005 Opt. Lett. 30 1530

    [4]

    Lim H C, Wang D, Tanemura T, Katoh K, Kikuchi K 2006 IEEE LEOS Topical Meeting Quebec City, Canada, July 17-19, 2006 paper TuB2.4

    [5]

    Li X Y, Voss P L, Sharping J E, Kumar P 2005 Phys. Rev. Lett. 94 053601

    [6]

    Takesue H, Inoue K 2005 Phy. Rev. A 72 041804(R)

    [7]

    Yang L, Ma X X, Guo X S, Cui L, Li X Y 2011 Phys. Rev. A 83 053843

    [8]

    Goldschmidt E A, Eisaman M D, Fan J, Polyakov S V, Migdall A 2008 Phys. Rev. A 78 013844

    [9]

    Chen J, Altepeter J B, Medic M, Lee K F, Gokden B, Hadfield R H, Nam S W, Kumar P 2008 Phys. Rev. Lett. 100 149903

    [10]

    Cui L, Li X Y, Zhao N B 2012 Acta Opt. Sin. 32 0119002 (in Chinese) [崔亮, 李小英, 赵宁波 2012 光学学报 32 0119002]

    [11]

    Yang L, Wang B S, Li X Y 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 王宝善, 李小英 2008 物理学报 57 4933]

    [12]

    Li X Y, Chen J, Voss P L 2004 Opt. Express 12 3737

    [13]

    Li X Y, Voss P L, Chen J, Lee K F, Kumar P 2005 Opt. Express 13 2236

    [14]

    Takesue H, Inoue K 2005 Opt. Express 13 7832

    [15]

    Ma X X, Yang L, Guo X S 2011 Opt. Commun. 284 4558

    [16]

    Ma X X, Li X Y, Cui L, Guo X S, Yang L 2011 Phys. Rev. A 84 023829

    [17]

    Cui L, Li X Y, Zhao N B 2012 New J. Phys. 14 123001

计量
  • 文章访问数:  1766
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-26
  • 修回日期:  2013-05-02
  • 刊出日期:  2013-08-05

脉冲抽运光啁啾对全光纤量子关联光子对纯度的影响

  • 1. 天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
    基金项目: 

    国家重点基础研究发展计划(批准号: 2010CB923101)和国家自然科学基金(批准号: 11074186)资助的课题.

摘要: 信号与闲置光子波长均为1550 nm 通信波段的全光纤关联光子对源, 具有低成本以及可与现有光纤网络低损耗连接的特点. 进一步优化其纯度, 将有助于提高这种量子光源的实用化程度.当抽运脉冲光在光纤中传输时, 由于色散和Kerr非线性效应的影响, 会不可避免地引入啁啾. 本文利用脉冲激光抽运零色散位移光纤, 研究了抽运光啁啾对关联光子对纯度的影响. 结果表明, 通信波段小失谐关联光子对的纯度随啁啾的增大而下降. 若采用变换极限的锁模激光为抽运源, 将有助于抑制Raman散射对自发四波混频的影响, 提高光子对的纯度.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回