搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称电流偏置下互耦半导体激光器的混沌同步特性研究

何元 邓涛 吴正茂 刘元元 夏光琼

引用本文:
Citation:

非对称电流偏置下互耦半导体激光器的混沌同步特性研究

何元, 邓涛, 吴正茂, 刘元元, 夏光琼

Investigations on chaos synchronization characteristics of mutually coupled semiconductor lasers with asymmetrical bias currents

He Yuan, Deng Tao, Wu Zheng-Mao, Liu Yuan-Yuan, Xia Guang-Qiong
PDF
导出引用
  • 利用两个电流偏置在不同值的半导体激光器(SL)构建一个延时互耦系统,实验研究了两个SL的非对称偏置电流和频率失谐Δf(=f1-f2,f1,f2分别对应SL1和SL2的自由振荡频率)对系统混沌同步性能的影响.研究结果表明:对于两个振荡频率一致的SL,当两个SL的偏置电流差异较大时系统能实现较好的混沌同步;通过调节两个SL的温度,使两个SL的振荡频率失谐,对于SL1电流远大于SL2电流的情形,正频率失谐
    Based on a delayed mutually coupled system consisting of two semiconductor lasers (SL) with different injection currents, the influences of the asymmetric bias currents of two SLs and the frequency detuning Δf (Δf=f1-f2, where f1 and f2 are the free frequencies of SL1 and SL2 respectively) on synchronization performance have been investigated experimentally. The results show that for the case of the two SLs with identical free oscillation frequencies, the mutually coupled system can achieve excellent chaos synchronization under relatively large asymmetrical injection currents. Furthermore, the frequency detuning, controlled by adjusting the temperature of one of the two SLs, has an obvious influence on synchronization performance. For the case of the SL1 biased at a relatively much larger current than that of SL2, the synchronization performance will degrade with the increase of the positive frequency detuning (f1>f2), while the synchronization performance can be further improved with suitable negative frequency detuning. The simulated results are basically consistent with experimental results.
    • 基金项目: 国家自然科学基金(批准号:60978003,61078003),中央高校基本科研业务费专项资金(批准号:XDJK2009B010)资助的课题.
    [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Sivaprakasam S, Shore K A 1999 Opt. Lett. 24 466

    [3]

    Rogister F, Locquet A, Pieroux D, Sciamanna M, Deparis O, Mégre P, Blondel M 2001 Opt. Lett. 26 1486

    [4]

    Zhang X J, Wang B J, Yang L Z, Wang A B, Guo D M, Wang Y C 2009 Acta Phys. Sin. 58 3203 (in Chinese) [张秀娟、王冰洁、杨玲珍、王安帮、郭东明、王云才 2009 物理学报 58 3203]

    [5]

    Lee M W, Paul J, Sivaprakasam S, Shore K A 2003 Opt. Lett. 28 2168

    [6]

    Yan S L 2008 Acta Phys. Sin. 57 6878 (in Chinese) [颜森林 2008 物理学报 57 6878]

    [7]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发、夏光琼、吴正茂 2009物理学报 58 4669]

    [8]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 437 343

    [9]

    Zhang J Z, Wang Y C, Wang A B 2008 Chin. Phys. B 17 3264

    [10]

    Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese) [李孝峰、潘 炜、马 冬、罗 斌、张伟利、熊 悦 2006 物理学报 55 5094]

    [11]

    Buldú J M, García-Ojalvo J, Torrent M C 2004 IEEE J. Quantum Electron. 40 640

    [12]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [13]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [14]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [15]

    Hohl A, Gavrielides A, Erneux T, Kovanis V 1997 Phys. Rev. Lett. 78 474

    [16]

    Fujino H, Ohtsubo J 2001 Opt. Rev. 8 351

    [17]

    Heil T, Fischer I, Elsasser W, Mulet J, Mirasso C R 2001 Phys. Rev. Lett. 86 795

    [18]

    Klein E, Gross N, Rosenbluh M, Kinzel W, Khaykovich L, Kanter I 2006 Phys. Rev. E 73 066214

    [19]

    Vicente R, Mirasso C R 2007 Opt. Lett. 32 403

    [20]

    Chen Z L, Zhou P, Xu X J, Hon J, Jiang Z F 2008 Acta Phys. Sin. 57 3588 (in Chinese) [陈子伦、周 朴、许晓军、侯 静、姜宗福 2008 物理学报 57 3588]

    [21]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243

    [22]

    Gao Z C, Wu Z M, Cao L P, Xia G Q 2009 Appl. Phys. B 97 645

    [23]

    Gross N, Kinzel W, Kanter I, Rosenbluh M, Khaykovich L 2006 Opt. Commun. 267 464

    [24]

    Rogister F, Garacía-Ojalvo J 2003 Opt. Lett. 28 1176

    [25]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [26]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y 2008 IEEE Photon. Technol. Lett. 20 712

  • [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Sivaprakasam S, Shore K A 1999 Opt. Lett. 24 466

    [3]

    Rogister F, Locquet A, Pieroux D, Sciamanna M, Deparis O, Mégre P, Blondel M 2001 Opt. Lett. 26 1486

    [4]

    Zhang X J, Wang B J, Yang L Z, Wang A B, Guo D M, Wang Y C 2009 Acta Phys. Sin. 58 3203 (in Chinese) [张秀娟、王冰洁、杨玲珍、王安帮、郭东明、王云才 2009 物理学报 58 3203]

    [5]

    Lee M W, Paul J, Sivaprakasam S, Shore K A 2003 Opt. Lett. 28 2168

    [6]

    Yan S L 2008 Acta Phys. Sin. 57 6878 (in Chinese) [颜森林 2008 物理学报 57 6878]

    [7]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发、夏光琼、吴正茂 2009物理学报 58 4669]

    [8]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 437 343

    [9]

    Zhang J Z, Wang Y C, Wang A B 2008 Chin. Phys. B 17 3264

    [10]

    Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese) [李孝峰、潘 炜、马 冬、罗 斌、张伟利、熊 悦 2006 物理学报 55 5094]

    [11]

    Buldú J M, García-Ojalvo J, Torrent M C 2004 IEEE J. Quantum Electron. 40 640

    [12]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [13]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [14]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [15]

    Hohl A, Gavrielides A, Erneux T, Kovanis V 1997 Phys. Rev. Lett. 78 474

    [16]

    Fujino H, Ohtsubo J 2001 Opt. Rev. 8 351

    [17]

    Heil T, Fischer I, Elsasser W, Mulet J, Mirasso C R 2001 Phys. Rev. Lett. 86 795

    [18]

    Klein E, Gross N, Rosenbluh M, Kinzel W, Khaykovich L, Kanter I 2006 Phys. Rev. E 73 066214

    [19]

    Vicente R, Mirasso C R 2007 Opt. Lett. 32 403

    [20]

    Chen Z L, Zhou P, Xu X J, Hon J, Jiang Z F 2008 Acta Phys. Sin. 57 3588 (in Chinese) [陈子伦、周 朴、许晓军、侯 静、姜宗福 2008 物理学报 57 3588]

    [21]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243

    [22]

    Gao Z C, Wu Z M, Cao L P, Xia G Q 2009 Appl. Phys. B 97 645

    [23]

    Gross N, Kinzel W, Kanter I, Rosenbluh M, Khaykovich L 2006 Opt. Commun. 267 464

    [24]

    Rogister F, Garacía-Ojalvo J 2003 Opt. Lett. 28 1176

    [25]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [26]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y 2008 IEEE Photon. Technol. Lett. 20 712

  • [1] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [2] 王学友, 王宇飞, 郑婉华. Parity-time对称性对电注入半导体激光器的模式控制. 物理学报, 2020, 69(2): 024202. doi: 10.7498/aps.69.20191351
    [3] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [4] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [5] 刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼. 一种新型的双向长距离光纤混沌保密通信系统性能研究. 物理学报, 2012, 61(2): 024203. doi: 10.7498/aps.61.024203
    [6] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [7] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [8] 胡汉平, 于志良, 刘凌锋. 光电反馈混沌系统脉冲同步特性研究 . 物理学报, 2012, 61(19): 190504. doi: 10.7498/aps.61.190504
    [9] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信 . 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [10] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究. 物理学报, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [11] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制. 物理学报, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [12] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [13] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [14] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [15] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [16] 樊利, 夏光琼, 吴正茂. 基于光电反馈的激光混沌并联同步系统研究. 物理学报, 2009, 58(2): 989-994. doi: 10.7498/aps.58.989
    [17] 张秀娟, 王冰洁, 杨玲珍, 王安帮, 郭东明, 王云才. 平坦宽带混沌激光的产生及同步. 物理学报, 2009, 58(5): 3203-3207. doi: 10.7498/aps.58.3203
    [18] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [19] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [20] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
计量
  • 文章访问数:  5631
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-17
  • 修回日期:  2010-06-22
  • 刊出日期:  2011-02-05

非对称电流偏置下互耦半导体激光器的混沌同步特性研究

  • 1. 西南大学物理学院,重庆 400715
    基金项目: 国家自然科学基金(批准号:60978003,61078003),中央高校基本科研业务费专项资金(批准号:XDJK2009B010)资助的课题.

摘要: 利用两个电流偏置在不同值的半导体激光器(SL)构建一个延时互耦系统,实验研究了两个SL的非对称偏置电流和频率失谐Δf(=f1-f2,f1,f2分别对应SL1和SL2的自由振荡频率)对系统混沌同步性能的影响.研究结果表明:对于两个振荡频率一致的SL,当两个SL的偏置电流差异较大时系统能实现较好的混沌同步;通过调节两个SL的温度,使两个SL的振荡频率失谐,对于SL1电流远大于SL2电流的情形,正频率失谐

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回