搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新型三环谐振器的诱导透明效应分析

焦新泉 陈家斌 王晓丽 薛晨阳 任勇峰

引用本文:
Citation:

基于新型三环谐振器的诱导透明效应分析

焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰

Analysis of induced-transparency in an original three-order resonator system

Jiao Xin-Quan, Chen Jia-Bin, Wang Xiao-Li, Xue Chen-Yang, Ren Yong-Feng
PDF
导出引用
  • 针对谐振式微腔的应用需求, 提出了一种新型三环谐振式微腔结构, 类似于原子系统中的电磁诱导透明, 耦合诱导透明(CRIT)效应在一个新的光学微腔系统中已被实验证明. 该结构在硅基上由三个尺寸完全一样的微环腔组成, 通过理论分析、制备和实验测试, 能够观察到CRIT现象, 其频谱具有低群速的狭窄透明峰, 与光栅耦合器的耦合效率为34%, 并且谐振器的品质因数达到了0.65×105, 同时, 失谐的谐振波长可以通过温度变化来控制, 这在旋转传感、光滤波器、光存储器等方面的应用有重要意义.
    For the application requirements of resonant micro-cavity, an original three-ring resonant micro-cavity structure is proposed in this paper. Like electromagnetically induced transparency in an atomic system, the coupled resonator-induced transparency (CRIT) phenomenon in a new optical micro-cavity system is proven experimentally. Up to now, most of the resonators based on CRIT are just in the theoretical exploration stage, and the analysis of the double-ring structure has been relatively common. The CRIT effect of a resonator has a significant relationship with the coupler insertion loss, the ring circumference, and the multiples of the rings, which need high requirements in the structural design and preparation process. In order to reduce the difficulty in design and preparation, we propose a new three-ring cascade resonator structure with the same cavity size on silicon. According to the transfer matrix method and coupled mode theory, we find a CRIT effect after theoretical analysis. Our devices are fabricated on an SOI wafer. By using the micro-cavity measurement platform to repeat and analyze the tests of single ring and three-ring cascade resonator structure, we obtain a grating coupler efficiency of 30%. By applying the antireflection coating, the coupling efficiency of the grating coupler is up to 34%. During the test, the mutual interference between annular cavities of the three-ring resonators produces two transmission peaks, the output spectrum of the resonator with a narrow transparency peak at a low group velocity, which is verified in CRIT phenomenon. Compared with the traditional single-ring structure, the resonator has a quality factor increasing four times, reaching a value of up to 0.65×105, the through and drop transmission spectra of the resonator are reconciled well with each other. At the same time, in order to obtain the sensitivity of the resonator to temperature, we conduct tuning tests of the resonator temperature characteristics, the resonant peak is moved to the large wavelength direction with temperature increasing, and detuning wavelength of the resonance can be controlled by changing temperature, which is called red-shift. Therefore, the original three-ring cascaded resonators have significant applications in the rotation sensing, optical filters, optical storage and temperature sensing elements.
    • 基金项目: 国家自然科学基金(批准号: 91123036, 61178058, 61275166, 61076111)和国家杰出青年科学基金(批准号: 51225504)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91123036, 61178058, 61275166, 61076111) and the National Science Fund for Distinguished Young Scholars of China (Grant No. 51225504).
    [1]

    Smith D D, Chang H, Fuller K A, Rosenberger A, Boyd R W 2004 Phys. Rev. A 69 063804

    [2]

    Oishi T, Suzuki R, Sultana P, Tomita M 2012 Opt. Lett. 37 2964

    [3]

    Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S, Lipson M 2006 Phys. Rev. Lett. 96 123901

    [4]

    Xu Q, Shakya J, Lipson M 2006 Opt. Express 14 6463

    [5]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [6]

    Naweed A, Farca G, Shopova S, Rosenberger A 2005 Phys. Rev. A 71 043804

    [7]

    Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215 (in Chinese) [任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215]

    [8]

    Cao T T, Zhang L B, Fei Y H, Cao Y M, Lei X, Chen S W 2013 Acta Phys. Sin. 62 194210 (in Chinese) [曹彤彤, 张利斌, 费永浩, 曹严梅, 雷勋, 陈少武 2013 物理学报 62 194210]

    [9]

    Xiong K, Xiao X, Hu Y T, Li Z Y, Chu T, Yu Y D, Yu J Z 2012 Chin. Phys. B 21 074203

    [10]

    Wang N, Zhang Y D, Yuan P 2011 Chin. Phys. B 20 044203

    [11]

    Zhang Y, Wang N, Tian H, Wang H, Qiu W, Wang J, Yuan P 2008 Phys. Lett. A 372 5848

    [12]

    Totsuka K, Tomita M 2007 Opt. Lett. 32 3197

    [13]

    Lee H, Chen T, Li J, Painter O, Vahala K J 2012 Nat. Commun. 3 867

    [14]

    Tang Y H, Lin Y H, Chen P L, Shiao M H, Hsiao C N 2014 Micro. Nano Lett. 9 395

    [15]

    Xiao S, Khan M H, Shen H, Qi M 2007 Opt. Express 15 10553

    [16]

    Vlasov Y, McNab S 2004 Opt. Express 12 1622

    [17]

    Maleki L, Matsko A, Savchenkov A, Ilchenko V 2004 Opt. Lett. 29 626

    [18]

    Li X, Wang L N, Guo S L, Li Z Q, Yang M 2014 Acta Phys. Sin. 63 154209 (in Chinese) [李欣, 王禄娜, 郭士亮, 李志全, 杨明 2014 物理学报 63 154209]

  • [1]

    Smith D D, Chang H, Fuller K A, Rosenberger A, Boyd R W 2004 Phys. Rev. A 69 063804

    [2]

    Oishi T, Suzuki R, Sultana P, Tomita M 2012 Opt. Lett. 37 2964

    [3]

    Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S, Lipson M 2006 Phys. Rev. Lett. 96 123901

    [4]

    Xu Q, Shakya J, Lipson M 2006 Opt. Express 14 6463

    [5]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [6]

    Naweed A, Farca G, Shopova S, Rosenberger A 2005 Phys. Rev. A 71 043804

    [7]

    Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215 (in Chinese) [任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215]

    [8]

    Cao T T, Zhang L B, Fei Y H, Cao Y M, Lei X, Chen S W 2013 Acta Phys. Sin. 62 194210 (in Chinese) [曹彤彤, 张利斌, 费永浩, 曹严梅, 雷勋, 陈少武 2013 物理学报 62 194210]

    [9]

    Xiong K, Xiao X, Hu Y T, Li Z Y, Chu T, Yu Y D, Yu J Z 2012 Chin. Phys. B 21 074203

    [10]

    Wang N, Zhang Y D, Yuan P 2011 Chin. Phys. B 20 044203

    [11]

    Zhang Y, Wang N, Tian H, Wang H, Qiu W, Wang J, Yuan P 2008 Phys. Lett. A 372 5848

    [12]

    Totsuka K, Tomita M 2007 Opt. Lett. 32 3197

    [13]

    Lee H, Chen T, Li J, Painter O, Vahala K J 2012 Nat. Commun. 3 867

    [14]

    Tang Y H, Lin Y H, Chen P L, Shiao M H, Hsiao C N 2014 Micro. Nano Lett. 9 395

    [15]

    Xiao S, Khan M H, Shen H, Qi M 2007 Opt. Express 15 10553

    [16]

    Vlasov Y, McNab S 2004 Opt. Express 12 1622

    [17]

    Maleki L, Matsko A, Savchenkov A, Ilchenko V 2004 Opt. Lett. 29 626

    [18]

    Li X, Wang L N, Guo S L, Li Z Q, Yang M 2014 Acta Phys. Sin. 63 154209 (in Chinese) [李欣, 王禄娜, 郭士亮, 李志全, 杨明 2014 物理学报 63 154209]

  • [1] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [2] 戴玉, 张文喜, 孔新新, 沈杨翊, 徐豪, 张晓强. 基于低频外差干涉的光纤环形器重合度检测研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231941
    [3] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [4] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应. 物理学报, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [5] 高海燕, 杨欣达, 周波, 贺青, 韦联福. 耦合诱导的四分之一波长超导谐振器微波传输透明. 物理学报, 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [6] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [7] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [8] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [9] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [10] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞. 物理学报, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [11] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [12] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究. 物理学报, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [13] 刘向远, 钱仙妹, 张穗萌, 崔朝龙. 宏-微脉冲激光激发钠信标回波光子数的数值计算与探讨. 物理学报, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [14] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [15] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度. 物理学报, 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [16] 杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德. 硅基光栅耦合器的研究进展. 物理学报, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [17] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [18] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [19] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [20] 杨 华, 朱洪亮, 潘教青, 冯 文, 谢红云, 周 帆, 安 欣, 边 静, 赵玲娟, 陈娓兮, 王 圩. 采用单边大光腔结构改善电吸收调制器的光场分布. 物理学报, 2007, 56(5): 2751-2755. doi: 10.7498/aps.56.2751
计量
  • 文章访问数:  4815
  • PDF下载量:  8202
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-06
  • 修回日期:  2015-01-19
  • 刊出日期:  2015-07-05

/

返回文章
返回