搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构改进的厘米尺寸谐振腔的磁场传感特性

于长秋 马世昌 陈志远 项晨晨 李海 周铁军

引用本文:
Citation:

结构改进的厘米尺寸谐振腔的磁场传感特性

于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军

Magnetic field sensing performance of centimeter-scale resonator with optimized structure

Yu Chang-Qiu, Ma Shi-Chang, Chen Zhi-Yuan, Xiang Chen-Chen, Li Hai, Zhou Tie-Jun
PDF
HTML
导出引用
  • 基于光力谐振腔的磁力仪在应用时主要受限于灵敏度和检测带宽两个指标. 本文设计了一种厘米尺寸的回音壁模式谐振腔结构, 可探测6 Hz至1 MHz频率范围内的交变磁场, 在无磁屏蔽、室温环境下、无直流偏置磁场时, 其最佳灵敏度在123.8 kHz可达530 pT·Hz–1/2, 探测带宽和最佳灵敏度分别为同尺寸谐振腔的11倍和1.67倍. 该磁场传感器仅需100 μW的光功率, 功耗很低. 后续通过优化系统噪声、提升器件磁场响应能力等手段可进一步提升其传感性能, 有望在电力系统故障监测和医学诊断等领域发挥其应用潜力.
    Applications of magnetometers are affected mainly by their sensitivities and detection bandwidths. Till now, the applications of the centimeter-scale optomechanical magnetometer have been still limited by those two factors. In order to improve its sensing performance in a low frequency regime of the alternating current (AC) magnetic field sensor based on centimeter-scale whispering gallery mode resonator, we design a new centimeter-scale crystalline whispering gallery mode resonator which has different relative distributions of the magnetostrictive material (Terfenol-D) and the optical material (CaF2) from the unoptimized centimeter-scale whispering gallery mode resonator. Experimental results show that this new resonator is able to detect the AC magnetic field ranging from 6 Hz to 1 MHz, and a peak sensitivity of 530 pT·Hz–1/2 at 123.8 kHz is achieved without DC bias field in a magnetically unshielded non-cryogenic environment. On condition that the optical quality factor is at the same level of 108 and there is no DC bias magnetic field, the best sensitivity of the optimized resonator is 11 times higher than that of the unoptimized resonator, and the corresponding detection frequency band is expanded by 1.67 times, switching from the frequency band of 10 Hz–600 kHz to 6 Hz–1 MHz. Besides, the device only needs 100 μW light intensity to operate, which offers us a low optical power consumption magnetometer. Within the detection frequency band, the proposed magnetometer can detect both a single frequency alternating magnetic field signal and an alternating magnetic field signal covering a certain frequency range. It can detect 50 or 60 Hz alternating magnetic field signal generated by current in the wire so that the working status of the power system can be monitored. If the sensing performance is further improved, it may be able to detect the magnetic field signal at frequency in a range of 1 kHz–10 MHz generated by the partial discharge current and the extremely low frequency human body magnetic field signal located in a frequency band of [10 mHz–1 kHz]. Further improvement in sensing performance is possible through optimizing the system noise and the magnetic field response capability of the device, which might allow the device to possess the applications in the fields of power system fault monitoring and medical diagnosis.
      通信作者: 于长秋, cqyu@hdu.edu.cn ; 周铁军, tjzhou@hdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805061, 11874135)、浙江省重点研发计划项目(批准号: 2021C01039)、科技部项目(引智基地编号:D20011)和浙江省自然科学基金青年科学基金(批准号: GK200904207023)资助的课题.
      Corresponding author: Yu Chang-Qiu, cqyu@hdu.edu.cn ; Zhou Tie-Jun, tjzhou@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805061, 11874135), the Key Research and Development Program of Zhejiang Province (Grant No. 2021C01039),Project of Ministry of Science and Technology (Grant No. D20011), and the Young Scientists Fund of the Natural Science Foundation of Zhejiang Province, China (Grant No. GK200904207023)
    [1]

    Li J, Suh M G, Vahala K 2017 Optica 4 346Google Scholar

    [2]

    Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612Google Scholar

    [3]

    Weng W, Anstie J D, Stace T M, Campbell G, Baynes F N, Luiten A N 2014 Phys. Rev. Lett. 112 160801Google Scholar

    [4]

    Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495Google Scholar

    [5]

    Li B B, Wang Q Y, Xiao Y F, Jiang X F, Li Y, Xiao L, Gong Q 2010 Appl. Phys. Lett. 96 251109Google Scholar

    [6]

    Ma Q, Huang L, Guo Z, Rossmann T 2010 Meas. Sci. Technol. 21 115206Google Scholar

    [7]

    Lin N, Jiang L, Wang S, Xiao H, Lu Y, Tsai H 2011 Appl. Opt. 50 992Google Scholar

    [8]

    Ioppolo T, Otugen M V 2007 J. Opt. Soc. Am. B:Opt. Phys. 24 2721Google Scholar

    [9]

    Manzo M, Ioppolo T, Ayaz U K, Lapenna V, tgen M V 2012 Rev. Sci. Instrum. 83 105003Google Scholar

    [10]

    Henze R, Seifert T, Ward J, Benson O 2011 Opt. Lett. 36 4536Google Scholar

    [11]

    Harris G I, McAuslan D L, Stace T M, Doherty A C, Bowen W P 2013 Phys. Rev. Lett. 111 103603Google Scholar

    [12]

    Schliesser A, Anetsberger G, Rivire R, Arcizet O, Kippenberg T J 2008 New. J. Phys. 10 095015Google Scholar

    [13]

    Tallur S, Bhave S A 2013 Opt. Express 21 1Google Scholar

    [14]

    Anetsberger G, Gavartin E, Arcizet O, Unterreithmeier Q P, Weig E M, Gorodetsky M L, Kotthaus J P, Kippenberg T J 2010 Phys. Rev. A 82 061804Google Scholar

    [15]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photonics 6 768Google Scholar

    [16]

    Ioppolo T, Ayaz U, Otugen M V 2009 Opt. Express 17 16465Google Scholar

    [17]

    Ali A R, Ioppolo T, tgen V, Christensen M, MacFarlane D 2014 J. Polym. Sci., Part B: Polym. Phys. 52 276Google Scholar

    [18]

    Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Dunlop H R 2012 Phys. Rev. Lett. 108 1Google Scholar

    [19]

    Forstner S, Sheridan E, Knittel J, Humphreys C L, Brawley G A, Dunlop H R, Bowen W P 2014 Adv. Mater. 26 1Google Scholar

    [20]

    Li B B, Blek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [21]

    Yu C Q, Janousek J, Sheridan E, McAuslan D L, Dunlop H R, Lam P K, Zhang Y D, Bowen W P 2016 Phys. Rev. Appl. 5 044007Google Scholar

    [22]

    Yu Y M, Forstner S, Rubinsztein-Dunlop H, Bowen W P 2018 Sensors 18 1558Google Scholar

    [23]

    Zhu J G, Zhao G M, Savukor I, Yang L 2017 Sci. Rep. 7 8896Google Scholar

    [24]

    Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 7698Google Scholar

    [25]

    Zhai J, Xing Z, Dong S, Li J, Viehland D 2006 Appl. Phys.Lett. 88 062510Google Scholar

    [26]

    Meyer H G, Stolz R, Chwala A, Schulz M 2005 Phys. Status Solidi C 2 1504Google Scholar

    [27]

    Seidel P 2015 Applied Superconductivity: Handbook on Devices and Applicaitons (Weinheim: Wiley-VCH) pp1020−1038

    [28]

    Grosz A, Haji-Sheikh M J, Mukhopadhyay S C, 2017 High Sensitivity Magnetometers (Switzerland: Springer) pp140−147

    [29]

    Savchenkov A A, Matsko A B, Ilchenko V S, Maleki L 2007 Opt. Express 15 6768Google Scholar

    [30]

    Forstner S, Knittel J, Rubinsztein-Dunlop H, Bowen W P 2012 Proceedings of SPIE 8439 84390UGoogle Scholar

    [31]

    Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46Google Scholar

    [32]

    Yuen H P, Chan V M 1983 Opt. Lett. 8 177Google Scholar

    [33]

    Engdahl G 2000 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) pp257−264

    [34]

    Tang T, Wu X, Liu L Y, Xu L 2016 Appl. Opt. 55 395Google Scholar

    [35]

    Hemmati E, Shahrtash S M 2013 IEEE Trans. Instrum. Meas. 62 71Google Scholar

    [36]

    Vrba J, Robinson S E 2001 Methods 25 249Google Scholar

  • 图 1  (a) 改进型谐振腔三维结构示意图, 亮黄色区域: CaF2, 黑色区域: Terfenol-D, 姜黄色区域: 陶瓷; (b)谐振腔的局部放大图和实物图

    Fig. 1.  (a) Schematic diagram of the optimized resonator structure; Bright yellow area: CaF2; Black area: Terfenol-D; Ginger area: ceramic; (b) local enlarged image and actual structure image of the resonator.

    图 2  (a) 改进前谐振腔结构的截面图; (b) 改进型谐振腔结构的截面图

    Fig. 2.  (a) Cross section of unoptimized resonator structure; (b) cross section of optimized resonator structure.

    图 3  (a) 改进前谐振腔力学模式的有限元模拟结果, 从左至右, 频率依次为69.2 kHz, 121.3 kHz, 和138.4 kHz; (b) 改进型谐振腔力学模式的有限元模拟结果, 从左至右, 频率依次为72.5 kHz, 123.8 kHz, 和137.5 kHz

    Fig. 3.  (a) Finite element modelling (FEM) of mechanical eigenfrequency modes for unoptimized resonator; From left to right, the frequencies are 69.2 kHz, 121.3 kHz and 138.4 kHz, respectively; (b) FEM of mechanical eigenfrequency modes for optimized resonator. From left to right, the frequencies are 72.5 kHz, 123.8 kHz and 137.5 kHz, respectively.

    图 4  光学品质因数测量实验装置图

    Fig. 4.  Schematic of the experimental setup for the optical quality factor measurement.

    图 5  归一化的腔透射谱

    Fig. 5.  Normalized transmission spectrum of the resonator.

    图 6  磁场传感实验装置图

    Fig. 6.  Schematic of the experimental setup for magnetic field sensing.

    图 7  (a) 电光调制频率为15 MHz时的功率谱密度$S\left( \omega \right)$; 绿色峰为280 kHz处的参考磁场信号; 插图: BW = 330 Hz时SNR开方值随信号场强度变化关系; (b) 系统响应$N\left( \omega \right)$

    Fig. 7.  (a) Power spectral density $S\left( \omega \right)$ with a 15 MHz electro optic modulation frequency, and the highest green peak shows the response to the applied reference field at 280 kHz; Inset: response to the magnetic field as a function of signal field strength, with 330 Hz spectrum analyzer resolution bandwidth; (b) system response $N\left( \omega \right)$.

    图 8  (a) 电光调制频率为13.6 MHz时的功率谱密度$S\left( \omega \right)$, 280 kHz参考磁场频率处有峰值响应; 插图: BW = 10 Hz条件下, SNR开方值随信号场强度变化关系; (b) 系统响应$N\left( \omega \right)$

    Fig. 8.  (a) Power spectral density $S\left( \omega \right)$ with a 13.6 MHz electro optic modulation frequency, and the highest peak shows the response to the applied reference field at 280 kHz; Inset: response to the magnetic field as a function of signal field strength, with 10 Hz spectrum analyzer resolution bandwidth; (b) system response $N\left( \omega \right)$.

    图 9  改进型谐振腔(黄色曲线)和改进前谐振腔(蓝色曲线)的磁场传感灵敏度

    Fig. 9.  Magnetic field sensitivities of optimized resonator and unoptimized resonator.

  • [1]

    Li J, Suh M G, Vahala K 2017 Optica 4 346Google Scholar

    [2]

    Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612Google Scholar

    [3]

    Weng W, Anstie J D, Stace T M, Campbell G, Baynes F N, Luiten A N 2014 Phys. Rev. Lett. 112 160801Google Scholar

    [4]

    Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495Google Scholar

    [5]

    Li B B, Wang Q Y, Xiao Y F, Jiang X F, Li Y, Xiao L, Gong Q 2010 Appl. Phys. Lett. 96 251109Google Scholar

    [6]

    Ma Q, Huang L, Guo Z, Rossmann T 2010 Meas. Sci. Technol. 21 115206Google Scholar

    [7]

    Lin N, Jiang L, Wang S, Xiao H, Lu Y, Tsai H 2011 Appl. Opt. 50 992Google Scholar

    [8]

    Ioppolo T, Otugen M V 2007 J. Opt. Soc. Am. B:Opt. Phys. 24 2721Google Scholar

    [9]

    Manzo M, Ioppolo T, Ayaz U K, Lapenna V, tgen M V 2012 Rev. Sci. Instrum. 83 105003Google Scholar

    [10]

    Henze R, Seifert T, Ward J, Benson O 2011 Opt. Lett. 36 4536Google Scholar

    [11]

    Harris G I, McAuslan D L, Stace T M, Doherty A C, Bowen W P 2013 Phys. Rev. Lett. 111 103603Google Scholar

    [12]

    Schliesser A, Anetsberger G, Rivire R, Arcizet O, Kippenberg T J 2008 New. J. Phys. 10 095015Google Scholar

    [13]

    Tallur S, Bhave S A 2013 Opt. Express 21 1Google Scholar

    [14]

    Anetsberger G, Gavartin E, Arcizet O, Unterreithmeier Q P, Weig E M, Gorodetsky M L, Kotthaus J P, Kippenberg T J 2010 Phys. Rev. A 82 061804Google Scholar

    [15]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photonics 6 768Google Scholar

    [16]

    Ioppolo T, Ayaz U, Otugen M V 2009 Opt. Express 17 16465Google Scholar

    [17]

    Ali A R, Ioppolo T, tgen V, Christensen M, MacFarlane D 2014 J. Polym. Sci., Part B: Polym. Phys. 52 276Google Scholar

    [18]

    Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Dunlop H R 2012 Phys. Rev. Lett. 108 1Google Scholar

    [19]

    Forstner S, Sheridan E, Knittel J, Humphreys C L, Brawley G A, Dunlop H R, Bowen W P 2014 Adv. Mater. 26 1Google Scholar

    [20]

    Li B B, Blek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [21]

    Yu C Q, Janousek J, Sheridan E, McAuslan D L, Dunlop H R, Lam P K, Zhang Y D, Bowen W P 2016 Phys. Rev. Appl. 5 044007Google Scholar

    [22]

    Yu Y M, Forstner S, Rubinsztein-Dunlop H, Bowen W P 2018 Sensors 18 1558Google Scholar

    [23]

    Zhu J G, Zhao G M, Savukor I, Yang L 2017 Sci. Rep. 7 8896Google Scholar

    [24]

    Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 7698Google Scholar

    [25]

    Zhai J, Xing Z, Dong S, Li J, Viehland D 2006 Appl. Phys.Lett. 88 062510Google Scholar

    [26]

    Meyer H G, Stolz R, Chwala A, Schulz M 2005 Phys. Status Solidi C 2 1504Google Scholar

    [27]

    Seidel P 2015 Applied Superconductivity: Handbook on Devices and Applicaitons (Weinheim: Wiley-VCH) pp1020−1038

    [28]

    Grosz A, Haji-Sheikh M J, Mukhopadhyay S C, 2017 High Sensitivity Magnetometers (Switzerland: Springer) pp140−147

    [29]

    Savchenkov A A, Matsko A B, Ilchenko V S, Maleki L 2007 Opt. Express 15 6768Google Scholar

    [30]

    Forstner S, Knittel J, Rubinsztein-Dunlop H, Bowen W P 2012 Proceedings of SPIE 8439 84390UGoogle Scholar

    [31]

    Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46Google Scholar

    [32]

    Yuen H P, Chan V M 1983 Opt. Lett. 8 177Google Scholar

    [33]

    Engdahl G 2000 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) pp257−264

    [34]

    Tang T, Wu X, Liu L Y, Xu L 2016 Appl. Opt. 55 395Google Scholar

    [35]

    Hemmati E, Shahrtash S M 2013 IEEE Trans. Instrum. Meas. 62 71Google Scholar

    [36]

    Vrba J, Robinson S E 2001 Methods 25 249Google Scholar

  • [1] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [2] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [3] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性. 物理学报, 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [4] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [5] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] 侯智善, 徐帅, 骆杨, 李爱武, 杨罕. 激光3D纳米打印温度敏感的微球激光器. 物理学报, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [7] 吕月兰, 尹向宝, 孙伟民, 刘永军, 苑立波. 染料掺杂液晶填充毛细管的激光发射特性研究. 物理学报, 2018, 67(4): 044204. doi: 10.7498/aps.67.20171844
    [8] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [9] 张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远. Tm3+掺杂Ge-Ga-S玻璃微球-石英光纤锥耦合系统的荧光回廊模特性. 物理学报, 2016, 65(14): 144205. doi: 10.7498/aps.65.144205
    [10] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [11] 郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌. 锥形光纤激发盘腔光学模式互易性研究. 物理学报, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [12] 郭建增, 刘铁根, 牛志峰, 任晓明. 不同振荡放大比MOPA型化学激光器的数值模拟. 物理学报, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [13] 李述标, 武保剑, 文峰, 韩瑞. 高非线性光纤中四波混频的磁控机理研究. 物理学报, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [14] 舒方杰. 微盘腔垂直耦合器特性的拓展分析. 物理学报, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [15] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [16] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [17] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [18] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [19] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [20] 张 蕾, 蔡阳健, 陆璇辉. 一种新空心光束的理论及实验研究. 物理学报, 2004, 53(6): 1777-1781. doi: 10.7498/aps.53.1777
计量
  • 文章访问数:  4923
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-03-26
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回