搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上行链路大气波前畸变对剪切光束成像技术的影响

兰富洋 罗秀娟 樊学武 张羽 陈明徕 刘辉 贾辉

引用本文:
Citation:

上行链路大气波前畸变对剪切光束成像技术的影响

兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉

Effect of uplink atmospheric wavefront distortion on image quality of sheared-beam imaging

Lan Fu-Yang, Luo Xiu-Juan, Fan Xue-Wu, Zhang Yu, Chen Ming-Lai, Liu Hui, Jia Hui
PDF
导出引用
  • 剪切光束成像(sheared-beam imaging,SBI)技术是一种利用三束剪切相干激光照明的非传统成像技术,该技术通过探测器阵列接收目标反射回波的散斑图进行计算成像,在对远距离暗弱目标高分辨率成像方面有着独特的优势.大气湍流引起的光束波前畸变是影响SBI成像质量的一个关键因素,因此本文从湍流引起的激光波前畸变对目标频谱信息提取的影响入手,建立了光束波前畸变对成像影响的理论模型.利用多层相位屏模型模拟了近地25 km大气对SBI光束传输的影响.通过计算机仿真,得到了不同激光发射孔径和不同成像距离时SBI的成像结果.仿真结果表明,选取合适的发射孔径尺寸可以有效缓解湍流对光束波前质量的影响,从而提升成像质量.在Hutchin的研究基础上,对孔径选择范围的已有研究成果进行了扩展与深化.给出了SBI系统发射孔径尺寸选取的建议,为SBI对不同高度目标成像的像质差异分析提供了参考.
    Sheared-beam imaging (SBI) is a non-traditional imaging technique in which utilized are three sheared coherent lasers for illumination, and detector array to receive the intensity of speckle pattern reflected from the target. Finally the image of target can be reconstructed by computer algorithm from the data collected before. The SBI has some advantages in high resolution imaging for long-distance space targets. However, the wavefront distortion caused by atmospheric turbulence is a key factor affecting the imaging quality of SBI. Therefore, this paper focuses on the influence of wavefront distortion caused by atmospheric turbulence on the extraction of target spectral information. Theoretical model of the influence of wavefront distortion on imaging is established. The effects of low-order and high-order atmosphere turbulence on SBI imaging quality are analysed respectively. It turns out that low-order atmosphere turbulence does not result in poor image quality nor low-resolution, and just change the position of target on the image plane. But the image quality can be degraded when the wavefront root mean square (RMS) value at the target plane, caused by high-order atmosphere turbulence, exceeds /20. Beam emitted from larger aperture becomes more susceptible to perturbing effect, thus forming lower-quality wavefront. Considering that after passing through the atmosphere, beam also travels a long distance to reach the target surface. Targets at different heights will obtain different wavefront quality due to the diffraction of light. Thus the final wavefront quality is determined by turbulence intensity, aperture size and target height. Multi-layer phase-screen model and Hufnagel-Valley model are used to simulate the influences of near-earth (25 km) atmosphere on wavefront distortion at target plane with different imaging distances. Simulation results show that the wavefront RMS value rises with the increase of transmitting aperture diameter, and decreases with the increase of imaging distance. Transmitting aperture sizes in a range from 0.2 times r0 to twice r0 have been recommended for effective imaging by Hutchin[Hutchin R A 1993 Proc. SPIE 2029 161]. However, we find in our simulations that beams on the order of 2 r0 may cause significant wavefront error at short range target, and under some circumstances the clear image of target cannot be reconstructed. The imaging results of SBI at different laser transmitting apertures and different imaging distances are obtained, and evaluated by Strehl ratio. Imaging results show that choosing appropriate transmitting aperture size can effectively improve the imaging quality. But for the short-range targets, aperture size selection range presented by Hutchin can be too broad to be practicable. This paper suggests some approaches to choosing suitable aperture size for SBI system, and also providing a reference for the difference analysis of imaging quality for targets in different heights.
      通信作者: 罗秀娟, xj_luo@opt.ac.cn
      Corresponding author: Luo Xiu-Juan, xj_luo@opt.ac.cn
    [1]

    Fienup J R 2010 Imaging Systems Tucson, Arizona, USA, June 7-8, 2010 IMD2

    [2]

    Hutchin R A 2012 US Patent 20120162631[2012-6-28]

    [3]

    Hutchin R A 2012 US Patent 20120292481[2012-11-22]

    [4]

    Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202 (in Chinese)[兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 物理学报 66 204202]

    [5]

    Fairchild P, Payne I 2013 IEEE Aerospace Conference Big Sky Montana, USA, March 2-9, 2013 p1

    [6]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [7]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 物理学报 66 024203]

    [8]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [9]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese)[司庆丹, 罗秀娟, 曾志红 2014 物理学报 63 104203]

    [10]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [11]

    Goodman J W (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2013 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) p6 (in Chinese)[古德曼 J W 著(秦克诚, 刘培森, 陈家碧, 曹其智 译) 2013 傅里叶光学导论 (3 版) (北京: 电子工业出版社) 第6页]

    [12]

    Corser B A 1996 M. S. Thesis (Lubbock: Texas Tech University)

    [13]

    Yang Y Q 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[杨玉强 2009 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [14]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [15]

    Tyson R K 1996 Appl. Opt. 35 3640

    [16]

    Qian X M, Zhu W Y, Rao R Z 2009 Acta Phys. Sin. 58 6639 (in Chinese)[钱仙妹, 朱文越, 饶瑞中 2009 物理学报 58 6639]

    [17]

    Wang B F 2014 M. S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese)[王保峰 2014 硕士学位论文 (北京:中国科学院大学)]

    [18]

    Nelson D H, Walters D L, MacKerrow E P, Schmitt M J 2000 Appl. Opt. 39 1857

    [19]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in Matlab (Washington: SPIE) p149

  • [1]

    Fienup J R 2010 Imaging Systems Tucson, Arizona, USA, June 7-8, 2010 IMD2

    [2]

    Hutchin R A 2012 US Patent 20120162631[2012-6-28]

    [3]

    Hutchin R A 2012 US Patent 20120292481[2012-11-22]

    [4]

    Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202 (in Chinese)[兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 物理学报 66 204202]

    [5]

    Fairchild P, Payne I 2013 IEEE Aerospace Conference Big Sky Montana, USA, March 2-9, 2013 p1

    [6]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [7]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 物理学报 66 024203]

    [8]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [9]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese)[司庆丹, 罗秀娟, 曾志红 2014 物理学报 63 104203]

    [10]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [11]

    Goodman J W (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2013 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) p6 (in Chinese)[古德曼 J W 著(秦克诚, 刘培森, 陈家碧, 曹其智 译) 2013 傅里叶光学导论 (3 版) (北京: 电子工业出版社) 第6页]

    [12]

    Corser B A 1996 M. S. Thesis (Lubbock: Texas Tech University)

    [13]

    Yang Y Q 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[杨玉强 2009 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [14]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [15]

    Tyson R K 1996 Appl. Opt. 35 3640

    [16]

    Qian X M, Zhu W Y, Rao R Z 2009 Acta Phys. Sin. 58 6639 (in Chinese)[钱仙妹, 朱文越, 饶瑞中 2009 物理学报 58 6639]

    [17]

    Wang B F 2014 M. S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese)[王保峰 2014 硕士学位论文 (北京:中国科学院大学)]

    [18]

    Nelson D H, Walters D L, MacKerrow E P, Schmitt M J 2000 Appl. Opt. 39 1857

    [19]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in Matlab (Washington: SPIE) p149

  • [1] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法. 物理学报, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [2] 叶志斌, 江舒, 王海伦, 吴飞, 邓小雷, 王建晓. 直接液体冷却薄片激光器中抽运光均匀性对光束波前畸变的影响. 物理学报, 2022, 71(5): 054202. doi: 10.7498/aps.71.20211811
    [3] 叶志斌, 江舒, 王海伦, 吴飞, 邓小雷, 王建晓. 直接液体冷却薄片激光器中抽运光均匀性对光束波前畸变的影响研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211811
    [4] 闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱. 大气湍流信道中聚焦涡旋光束轨道角动量串扰特性. 物理学报, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [5] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [6] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利. 基于全相位谱分析的剪切光束成像目标重构. 物理学报, 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [7] 蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞. 非均匀采样的功率谱反演大气湍流相位屏的快速模拟. 物理学报, 2015, 64(22): 224217. doi: 10.7498/aps.64.224217
    [8] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [9] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [10] 蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞. 功率谱反演大气湍流随机相位屏采样方法的研究. 物理学报, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217
    [11] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [12] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [13] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [14] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [15] 黎芳, 唐华, 江月松, 欧军. 拉盖尔-高斯光束在湍流大气中的螺旋谱特性. 物理学报, 2011, 60(1): 014204. doi: 10.7498/aps.60.014204
    [16] 刘飞, 季小玲. 双曲余弦高斯列阵光束在湍流大气中的光束传输因子. 物理学报, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [17] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [18] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [19] 郑巍巍, 王丽琴, 许静平, 王立刚. 带初相位分布的径向基模激光束列阵在湍流大气中的传输特性研究. 物理学报, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [20] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
计量
  • 文章访问数:  5758
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 修回日期:  2018-07-12
  • 刊出日期:  2019-10-20

/

返回文章
返回