搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究

张伟 刘颖刚 张庭 刘鑫 傅海威 贾振安

引用本文:
Citation:

芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究

张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安

Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor

Zhang Wei, Liu Ying-Gang, Zhang Ting, Liu Xin, Fu Hai-Wei, Jia Zhen-An
PDF
导出引用
  • 提出了一种基于芯内双微孔复合结构的全光纤干涉传感器结构,建立了传感器反射光谱的理论模型,给出了反射光谱强度与微孔长度、孔内介质折射率、微孔端面反射与损耗系数以及光纤的特性参数间的关系,并模拟了传感器光谱对温度和折射率变化的响应特性.利用193 nm准分子激光器,在普通单模光纤上加工制作了具有复合腔结构的全光纤多参量传感器,进行了传感实验研究.结果表明,该传感器具有优于99%的温度、折射率线性响应度,对应两套温度和折射率灵敏度分别为-0.172 nm/℃,1050.700 nm/RIU和0.004 nm/℃,48.775 nm/RIU,不仅能够实现温度、折射率以及它们的区分测量,还能够应用于气体压力的测量,测量精度可达0.3 kPa.
    A kind of dual micro-holes-based in-fiber Fabry-Perot interferometer sensor is proposed in this paper. The theoretical model of the reflection spectrum of proposed sensor is established based on the interference among four light beams, where both the relationships of the spectrum intensity with the length of micro-hole, refractive index (RI) of medium in cavity, transmission loss and reflection loss, and the characteristic parameters of fiber are demonstrated, and the temperature and RI responses of reflection spectra are also simulated. Through machining two micro-holes in single-mode fiber with 193 nm excimer laser, we fabricate the proposed fiber sensor which can be used for measuring the multi-physical quantities, and the corresponding experiments are demonstrated simultaneously. The results show that the sensor has better linear responses to temperature and RI change, and the corresponding linearity is superior to 99%. Due to having two sets of different temperature and RI sensitivities (i.e.-0.172 nm/℃ and 1050.700 nm/RIU; 0.004 nm/℃ and 48.775 nm/RIU) and better linearity, this kind of sensor can be used for measuring the temperature, the ambient RI and even the simultaneous discrimination of temperature and ambient RI. The RI and temperature resolutions are 1.010-5 RIU and 0.2℃, respectively. Furthermore, the sensor can also be used for sensing the gas pressure, and its measurement accuracy can reach to. 3 kPa. Owing to its high sensitivity, stability, small volume and easy fabrication, the sensor will be widely used in sensing technology.
      通信作者: 刘颖刚, ygliu@xsyu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61240028)和陕西省自然科学基础研究计划(批准号:2013JM8032)资助的课题.
      Corresponding author: Liu Ying-Gang, ygliu@xsyu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61240028) and the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2013JM8032).
    [1]

    Hideaki M, Daichi W, Hirotaka I 2013 Photonic Sens. 3 355

    [2]

    Huang Y, Tian Z, Sun L P, Sun D, Li J, Ran Y, Guan B O 2015 Opt. Express 23 26962

    [3]

    Pablo Z, Jesus M C, Carlos R Z, Ignacio R M, Francisco J A 2016 IEEE Sens. J. 16 4798

    [4]

    Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813

    [5]

    Li L, Xia Li, Xie Z H, Liu D M 2012 Opt. Express 20 11109

    [6]

    Xu L, Jiang L, Wang S, Li B, Lu Y 2013 Appl. Opt. 52 2038

    [7]

    Wang D, Cheng T H, Yeo Y K, Liu J G, Xu Z W, Wang Y X, Xiao G X 2010 Opt. Express 18 10343

    [8]

    Li Z L, Liao C R, Liu S, Wang Y P 2017 Acta Phys. Sin. 66 070708 (in Chinese)[李自亮, 廖常锐, 刘申, 王义平 2017 物理学报 66 070708]

    [9]

    Zhu Y Z, Cooper K L, Pickrell G R, Wang A 2006 J. Lightwave Technol. 24 861

    [10]

    Antunes P F C, Domingues M F F, Alberto N J, Andre P S 2014 IEEE Photonics Technol. Lett. 26 78

    [11]

    Jiang L, Zhao L J, Wang S M, Yang J P, Xiao H 2011 Opt. Express 19 17591

    [12]

    Nesson S, Yu M A, Zhang X M, Hsieh A H 2008 J. Biomed. Opt. 13 044040

    [13]

    Yang F, Tan Y Z, Jin W, Lin Y C, Qi Y, Ho H L 2016 Opt. Lett. 41 3025

    [14]

    Dominguesa M F, Antunesa P, Albertob N, Friasa R, Ferreirac R A S, Andrd P 2016 Measurement 77 265

    [15]

    Chen LX, Huang X G, Li J Y, Zhong Z B 2012 Rev. Sci. Instrum. 83 053113

    [16]

    Rao Y J, Deng M, Duan D W, Zhu T 2008 Sens. Actuators A 148 33

    [17]

    Xu B, Liu Y M, Wang D N, Li J Q 2016 J. Lightwave Technol. 34 4920

    [18]

    Gao S, Jin L, Ran Y, Sun L P, Li J, Guan B O 2012 Opt. Express 20 18281

    [19]

    Sun D, Ran Y, Wang G 2017 Sensors (Basel) 17 2559

    [20]

    Xu B, Liu Y M, Wang D N, Jia D G, Jiang C 2017 IEEE Photonics J. 9 7102309

    [21]

    Wang R H, Qiao X G 2015 IEEE Photonics Technol. Lett. 27 245

    [22]

    Zhang Y, Yuan L, Lan X, Kaur A, Huang J, Xiao H 2013 Opt. Lett. 38 4609

    [23]

    Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891

    [24]

    Ma Q F, Ni K, Huang R 2017 J. OptoelectronicsLaser 28 123 (in Chinese)[马启飞, 倪凯, 黄然 2017 光电子激光 28 123]

    [25]

    Liu J B, Wang D N, Zhang L 2016 J. Lightwave Technol. 34 4872

    [26]

    Shi F F, Zhao C L, Xu B, Wang D N 2016 Acta Photonica Sin. 45 0306003 (in Chinese)[时菲菲, 赵春柳, 徐贲, 王东宁 2016 光子学报 45 0306003]

  • [1]

    Hideaki M, Daichi W, Hirotaka I 2013 Photonic Sens. 3 355

    [2]

    Huang Y, Tian Z, Sun L P, Sun D, Li J, Ran Y, Guan B O 2015 Opt. Express 23 26962

    [3]

    Pablo Z, Jesus M C, Carlos R Z, Ignacio R M, Francisco J A 2016 IEEE Sens. J. 16 4798

    [4]

    Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813

    [5]

    Li L, Xia Li, Xie Z H, Liu D M 2012 Opt. Express 20 11109

    [6]

    Xu L, Jiang L, Wang S, Li B, Lu Y 2013 Appl. Opt. 52 2038

    [7]

    Wang D, Cheng T H, Yeo Y K, Liu J G, Xu Z W, Wang Y X, Xiao G X 2010 Opt. Express 18 10343

    [8]

    Li Z L, Liao C R, Liu S, Wang Y P 2017 Acta Phys. Sin. 66 070708 (in Chinese)[李自亮, 廖常锐, 刘申, 王义平 2017 物理学报 66 070708]

    [9]

    Zhu Y Z, Cooper K L, Pickrell G R, Wang A 2006 J. Lightwave Technol. 24 861

    [10]

    Antunes P F C, Domingues M F F, Alberto N J, Andre P S 2014 IEEE Photonics Technol. Lett. 26 78

    [11]

    Jiang L, Zhao L J, Wang S M, Yang J P, Xiao H 2011 Opt. Express 19 17591

    [12]

    Nesson S, Yu M A, Zhang X M, Hsieh A H 2008 J. Biomed. Opt. 13 044040

    [13]

    Yang F, Tan Y Z, Jin W, Lin Y C, Qi Y, Ho H L 2016 Opt. Lett. 41 3025

    [14]

    Dominguesa M F, Antunesa P, Albertob N, Friasa R, Ferreirac R A S, Andrd P 2016 Measurement 77 265

    [15]

    Chen LX, Huang X G, Li J Y, Zhong Z B 2012 Rev. Sci. Instrum. 83 053113

    [16]

    Rao Y J, Deng M, Duan D W, Zhu T 2008 Sens. Actuators A 148 33

    [17]

    Xu B, Liu Y M, Wang D N, Li J Q 2016 J. Lightwave Technol. 34 4920

    [18]

    Gao S, Jin L, Ran Y, Sun L P, Li J, Guan B O 2012 Opt. Express 20 18281

    [19]

    Sun D, Ran Y, Wang G 2017 Sensors (Basel) 17 2559

    [20]

    Xu B, Liu Y M, Wang D N, Jia D G, Jiang C 2017 IEEE Photonics J. 9 7102309

    [21]

    Wang R H, Qiao X G 2015 IEEE Photonics Technol. Lett. 27 245

    [22]

    Zhang Y, Yuan L, Lan X, Kaur A, Huang J, Xiao H 2013 Opt. Lett. 38 4609

    [23]

    Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891

    [24]

    Ma Q F, Ni K, Huang R 2017 J. OptoelectronicsLaser 28 123 (in Chinese)[马启飞, 倪凯, 黄然 2017 光电子激光 28 123]

    [25]

    Liu J B, Wang D N, Zhang L 2016 J. Lightwave Technol. 34 4872

    [26]

    Shi F F, Zhao C L, Xu B, Wang D N 2016 Acta Photonica Sin. 45 0306003 (in Chinese)[时菲菲, 赵春柳, 徐贲, 王东宁 2016 光子学报 45 0306003]

  • [1] 王松, 周闯, 李素文, 牟福生. 基于法布里-珀罗干涉仪测量大气环境CO2的方法. 物理学报, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] 李建宇, 董忠级, 张吉宏, 史雯慧, 郑加金, 韦玮. 具有温度自补偿的保偏光纤布拉格光栅多参量传感器的设计与制备. 物理学报, 2023, 72(14): 144206. doi: 10.7498/aps.72.20230478
    [3] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [4] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展. 物理学报, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [5] 李自亮, 廖常锐, 刘申, 王义平. 光纤法布里-珀罗干涉温度压力传感技术研究进展. 物理学报, 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [6] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [7] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [8] 王小飞, 杨华军, 张戈, 张庆礼, 窦仁勤, 丁守军, 罗建乔, 刘文鹏, 孙贵花, 孙敦陆. 自准直法测GdTaO4晶体折射率. 物理学报, 2016, 65(8): 087801. doi: 10.7498/aps.65.087801
    [9] 刘俊池, 李洪文, 王建立, 刘欣悦, 马鑫雪. 基于最大熵估计Alpha谱缩放与平移量的温度与发射率分离算法. 物理学报, 2015, 64(17): 175205. doi: 10.7498/aps.64.175205
    [10] 桂鑫, 胡陈晨, 谢莹, 李政颖. 分布式本征型法布里-珀罗传感器的研究. 物理学报, 2015, 64(5): 050704. doi: 10.7498/aps.64.050704
    [11] 曹晔, 裴庸惟, 童峥嵘. 仅用一根局部微结构长周期光纤光栅实现温度与弯曲曲率的同时测量. 物理学报, 2014, 63(2): 024206. doi: 10.7498/aps.63.024206
    [12] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [13] 花世群, 骆英. 发光光弹性涂层折射率测量方法. 物理学报, 2013, 62(5): 057801. doi: 10.7498/aps.62.057801
    [14] 娄淑琴, 鹿文亮, 王鑫. 同时测量扭转角度和扭转方向的侧漏光子晶体光纤扭转传感器. 物理学报, 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
    [15] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究. 物理学报, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] 延凤平, 郑 凯, 王 琳, 李一凡, 龚桃荣, 简水生, 尾形健一, 小池一步, 佐佐诚彦, 井上正崇, 矢野满明. 分子束外延法在Sapphire衬底上生长的Zn1-xMgxO薄膜折射率及厚度的测试. 物理学报, 2007, 56(7): 4127-4131. doi: 10.7498/aps.56.4127
    [18] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究. 物理学报, 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [19] 江 建, 饶云江, 周昌学, 朱 涛. 基于光放大的光纤Fizeau应变传感器频分复用系统. 物理学报, 2004, 53(7): 2221-2225. doi: 10.7498/aps.53.2221
    [20] 王义平, 饶云江, 冉曾令, 朱 涛. 高频CO2激光脉冲写入的长周期光纤光栅传感器的特性研究. 物理学报, 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
计量
  • 文章访问数:  6434
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-25
  • 修回日期:  2018-06-24
  • 刊出日期:  2019-10-20

/

返回文章
返回