搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有温度自补偿的保偏光纤布拉格光栅多参量传感器的设计与制备

李建宇 董忠级 张吉宏 史雯慧 郑加金 韦玮

引用本文:
Citation:

具有温度自补偿的保偏光纤布拉格光栅多参量传感器的设计与制备

李建宇, 董忠级, 张吉宏, 史雯慧, 郑加金, 韦玮

Temperature-independent multi-parameter sensor based on polarization maintaining fiber Bragg grating

Li Jian-Yu, Dong Zhong-Ji, Zhang Ji-Hong, Shi Wen-Hui, Zheng Jia-Jin, Wei Wei
PDF
HTML
导出引用
  • 多参量的动态检测对于隧道、桥梁和管道等结构疲劳损伤的预测具有重要意义, 开发一种高灵敏度、环境友好、低成本和易于操作的多参量动态检测技术一直是业界追求的目标. 为了克服目前基于光纤布拉格光栅(fiber Bragg grating, FBG)的多参量传感器结构和原理复杂、制作成本高等问题, 本文基于保偏光纤布拉格光栅(PM-FBG)设计并制作了一种结构简单且高灵敏度, 单点可同时测量多个参量的新型传感器. 该传感器通过传感臂可以同时测量某一点在两个垂直方向上的位移和扭转变化, 并具有温度自补偿功能. 实验结果表明: 该传感器的快轴和慢轴对于温度的响应不同, 其线性灵敏度分别为11.4 pm/℃和10.6 pm/℃, 温度补偿系数为0.8 pm/℃, 平均扭转灵敏度为0.20 dB/(°); 该传感器的快轴和慢轴对位移/弯曲的响应相同, 线性灵敏度为31.5 pm/mm. 当改变传感器周围的温度场, 其位移和扭转传感性能不受影响, 可实现3个参量的同时测量. 本文研制的PM-FBG新型多参量传感器可以保证高精度的温度、位移和扭转测量, 同时具有较低的制作成本, 有望为多参量动态检测提供一种新的手段.
    Dynamic multi-parameter detection is of great significance in predicting fatigue damage to structures such as tunnels, bridges, and pipelines. Developing a high-sensitivity, environmentally friendly, low-cost, and easy-to-operate multi-parameter dynamic detection technology has always been the goal of the industry. The polarization-maintaining fiber Bragg grating (PM-FBG) has a special grating structure composed of fiber Bragg grating (FBG) directly written into high birefringence and polarization-maintaining fiber, and it supports two distinct polarization eigenmodes with two effective refractive indices. The PM-FBG couples the light beams polarized along the two principal axes corresponding to slow axis and fast axis at two different Bragg wavelengths. The two peaks of PM-FBG have different responses to external changes, which may be used to solve the cross-sensitivity problem of FBG sensor and realize the simultaneous multi-parameter measurement of the temperature, longitudinal strain, transverse strain, or twist. In order to solve the problems of complex structure and principle and high production cost of FBG-based multi-parameter sensors, a novel multi-parameter fiber-optic sensor with high sensitivity and temperature independence is designed based on PM-FBG in this work. The PM-FBG sensor proposed can simultaneously measure the changes of displacement and twist in two vertical directions at a certain point and has the function of temperature self-compensation. The external structure of the sensor is fabricated by using three-dimensional printing technology through the fused deposition method and the raw material for creating different components through using polylactic acid. Experimental results show that the fast axis and slow axis of the sensor have different temperature responses, with linear sensitivities of 11.4 pm/℃ and 10.6 pm/℃, respectively, and the temperature compensation coefficient and average torsional sensitivity of the PM-FBG sensor are 0.8 pm/℃ and 0.20 dB/(°), respectively. The fast axis and slow axis of the PM-FBG sensor have the same response to displacement, with a sensitivity of 31.5 pm/mm and an adjustable range of 0–20 mm. The sensitivity to displacement, torsion, and temperature sensitivities of the sensor are all superior over those of commercial FBG sensors. By changing the temperature field around the sensor, its displacement- and torsion-sensing performances are not affected, thereby realizing the temperature self-compensation. Consequently, the proposed sensor has potential applications in the multi-parameter dynamic detection due to its simple structure, high sensitivity, good mechanical strength, and low cost.
      通信作者: 郑加金, zhengjj@njupt.edu.cn ; 韦玮, weiwei@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62075100)和江苏省研究生科研与实践创新计划(批准号: KYCX21_0704)资助的课题.
      Corresponding author: Zheng Jia-Jin, zhengjj@njupt.edu.cn ; Wei Wei, weiwei@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075100) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21_0704).
    [1]

    Yu B, Lin F, Wang M R, Ning H, Ling B D, Rao Y Y 2022 Sci. Rep. 12 18281Google Scholar

    [2]

    Fan Z C, Diao X Z, Hu K J, Zhang Y, Huang Z Y, Kang Y B, Yan H, 2020 Sci. Rep. 10 12330Google Scholar

    [3]

    Jinachandran S, Rajan G 2021 Mater. Des. 14 897Google Scholar

    [4]

    Zhu C, Zhuang Y Y, Liu B, Huang J 2022 IEEE Trans. Instrum. Meas. 71 7008212Google Scholar

    [5]

    Jinachandran, S, Li H, Xi J T, Prusty B G, Semenova Y, Farrell G, Rajan G 2018 IEEE Sens. J. 18 8739Google Scholar

    [6]

    Fu D Y, Liu X J, Shang J Y, Sun W M, Liu Y J 2020 IEEE Photon. Technol. Lett. 32 747Google Scholar

    [7]

    Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar

    [8]

    Sempionatto J R, Lin M Y, Yin L, Ernesto D, Pei K X, Thitaporn S, Silva A, Ahmed A K, Zhang F Y, Tostado N, Xu S, Wang J 2021 Nat. Biomed. Eng. 5 737Google Scholar

    [9]

    Caucheteur C, Guo T, Albert J 2017 J. Light. Technol. 35 3311Google Scholar

    [10]

    Jiang C, Liu Y Q, Mou C B 2021 IEEE Photon. Technol. Lett. 33 358Google Scholar

    [11]

    Ding Z H, Tan Z W, Gao Y S, Wu Y, Yin B 2020 Optik 221 165352Google Scholar

    [12]

    Liu Q, Li Q, Sun Y D, Chai Q, Zhang B, Liu C, Sun T, Liu W, Sun J D, Ren Z H, Chu P K 2019 Opt. Commun. 452 185Google Scholar

    [13]

    Huang J, Pham D T, Ji C Q, Wang Z C, Zhou Z D 2019 Measurement 134 226Google Scholar

    [14]

    Leal-Junior A G, Theodosiou A, Min R, Casas J, Diaz C R, Dosantos W M, Pontes M J, Siqueira, Adriano A S, Marques C, Kalli C, Frizera A 2019 IEEE Sens. J. 19 4054Google Scholar

    [15]

    Xu H B, Li F, Gao Y, Wang W 2020 IEEE Sens. J. 20 14857Google Scholar

    [16]

    Lu L D, Xu Y G, Dong M L, Zhu L Q 2022 IEEE Sens. J. 22 338Google Scholar

    [17]

    Liu C, Jiang Y J, Du B B, Wang T, Feng D Y, Jiang B Q, Yang D X 2019 Sens. Actuator A Phys. 290 172Google Scholar

    [18]

    Barot D, Wang G, Duan L Z 2019 IEEE Photon. Technol. Lett. 31 709Google Scholar

    [19]

    Yang F, Fang Z J, Pan Z Q, Ye Q, Cai H W, Qu R H 2012 Opt. Express 20 28839Google Scholar

    [20]

    Chen G H, Liu L Y, Jia H Z, Yu J M, Xu L, Wang W C 2004 IEEE Photon. Technol. Lett. 16 221Google Scholar

    [21]

    Guo T, Liu F, Du F, Zhang Z, Li C, Guan B O, Albert J 2013 Opt. Express 21 19097Google Scholar

  • 图 1  (a) PMF截面示意图; (b) PM-FBG结构示意图

    Fig. 1.  (a) Schematic cross-section of PMF; (b) schematic structure of PM-FBG.

    图 2  本文设计的PM-FBG传感器实物图

    Fig. 2.  The physical image of the PM-FBG sensor designed in this paper.

    图 3  PM-FBG传感器测试系统示意图

    Fig. 3.  Schematic diagram of PM-FBG sensor testing system.

    图 4  (a) PM-FBG传感器不同温度下光谱图; (b) PM-FBG的快轴和慢轴波长差与温度的关系

    Fig. 4.  (a) Spectra of PM-FBG sensor at different temperatures; (b) temperature versus wavelength difference corresponding to the fast axis and slow axis.

    图 5  (a) PM-FBG传感器不同扭转角度光谱图; (b)对应于图(a)的峰值强度变化曲线

    Fig. 5.  (a) Spectral response of PM-FBG sensor versus rotation over –90° to 90°; (b) individual peak intensities extracted from the spectra of (a).

    图 6  PM-FBG传感器位移传感性能测试 (a)弯曲测量实验装置; (b)曲率为0—11 m–1的光谱响应; (c) 曲率-波长; (d) 位移-波长(快轴, 慢轴)

    Fig. 6.  Displacement sensing performance test of PM-FBG sensor: (a)Experimental setup for bending measurement; (b) spectral response of curvature over 0 to 11 m–1; (c) curvature versus wavelength; (d) displacement versus wavelength of the fast axis and slow axis.

    图 7  PM-FBG传感器多参数同时测量 (a) 温度对位移的影响; (b) 温度对扭转的影响

    Fig. 7.  Cross measurement of different parameters by PM-FBG sensor: (a) Influence of temperature on displacement; (b) influence of temperature on torsion.

    图 8  PM-FBG传感器多参量同时测量光谱图

    Fig. 8.  PM-FBG sensor simultaneously measures multi-parameters spectral graph.

  • [1]

    Yu B, Lin F, Wang M R, Ning H, Ling B D, Rao Y Y 2022 Sci. Rep. 12 18281Google Scholar

    [2]

    Fan Z C, Diao X Z, Hu K J, Zhang Y, Huang Z Y, Kang Y B, Yan H, 2020 Sci. Rep. 10 12330Google Scholar

    [3]

    Jinachandran S, Rajan G 2021 Mater. Des. 14 897Google Scholar

    [4]

    Zhu C, Zhuang Y Y, Liu B, Huang J 2022 IEEE Trans. Instrum. Meas. 71 7008212Google Scholar

    [5]

    Jinachandran, S, Li H, Xi J T, Prusty B G, Semenova Y, Farrell G, Rajan G 2018 IEEE Sens. J. 18 8739Google Scholar

    [6]

    Fu D Y, Liu X J, Shang J Y, Sun W M, Liu Y J 2020 IEEE Photon. Technol. Lett. 32 747Google Scholar

    [7]

    Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar

    [8]

    Sempionatto J R, Lin M Y, Yin L, Ernesto D, Pei K X, Thitaporn S, Silva A, Ahmed A K, Zhang F Y, Tostado N, Xu S, Wang J 2021 Nat. Biomed. Eng. 5 737Google Scholar

    [9]

    Caucheteur C, Guo T, Albert J 2017 J. Light. Technol. 35 3311Google Scholar

    [10]

    Jiang C, Liu Y Q, Mou C B 2021 IEEE Photon. Technol. Lett. 33 358Google Scholar

    [11]

    Ding Z H, Tan Z W, Gao Y S, Wu Y, Yin B 2020 Optik 221 165352Google Scholar

    [12]

    Liu Q, Li Q, Sun Y D, Chai Q, Zhang B, Liu C, Sun T, Liu W, Sun J D, Ren Z H, Chu P K 2019 Opt. Commun. 452 185Google Scholar

    [13]

    Huang J, Pham D T, Ji C Q, Wang Z C, Zhou Z D 2019 Measurement 134 226Google Scholar

    [14]

    Leal-Junior A G, Theodosiou A, Min R, Casas J, Diaz C R, Dosantos W M, Pontes M J, Siqueira, Adriano A S, Marques C, Kalli C, Frizera A 2019 IEEE Sens. J. 19 4054Google Scholar

    [15]

    Xu H B, Li F, Gao Y, Wang W 2020 IEEE Sens. J. 20 14857Google Scholar

    [16]

    Lu L D, Xu Y G, Dong M L, Zhu L Q 2022 IEEE Sens. J. 22 338Google Scholar

    [17]

    Liu C, Jiang Y J, Du B B, Wang T, Feng D Y, Jiang B Q, Yang D X 2019 Sens. Actuator A Phys. 290 172Google Scholar

    [18]

    Barot D, Wang G, Duan L Z 2019 IEEE Photon. Technol. Lett. 31 709Google Scholar

    [19]

    Yang F, Fang Z J, Pan Z Q, Ye Q, Cai H W, Qu R H 2012 Opt. Express 20 28839Google Scholar

    [20]

    Chen G H, Liu L Y, Jia H Z, Yu J M, Xu L, Wang W C 2004 IEEE Photon. Technol. Lett. 16 221Google Scholar

    [21]

    Guo T, Liu F, Du F, Zhang Z, Li C, Guan B O, Albert J 2013 Opt. Express 21 19097Google Scholar

  • [1] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控. 物理学报, 2022, 71(10): 104207. doi: 10.7498/aps.71.20212302
    [2] 孙家程, 王婷婷, 戴洋, 常建华, 柯炜. 基于无芯光纤的多参数测量传感器. 物理学报, 2021, 70(6): 064202. doi: 10.7498/aps.70.20201474
    [3] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [4] 张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安. 芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究. 物理学报, 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [5] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展. 物理学报, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [6] 饶云江. 长距离分布式光纤传感技术研究进展. 物理学报, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [7] 李自亮, 廖常锐, 刘申, 王义平. 光纤法布里-珀罗干涉温度压力传感技术研究进展. 物理学报, 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [8] 桂鑫, 胡陈晨, 谢莹, 李政颖. 分布式本征型法布里-珀罗传感器的研究. 物理学报, 2015, 64(5): 050704. doi: 10.7498/aps.64.050704
    [9] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [10] 娄淑琴, 鹿文亮, 王鑫. 同时测量扭转角度和扭转方向的侧漏光子晶体光纤扭转传感器. 物理学报, 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
    [11] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究. 物理学报, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [12] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [13] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [14] 朱化春, 张淳民, 简小华. 新型风成像干涉仪温度补偿理论研究. 物理学报, 2010, 59(2): 893-898. doi: 10.7498/aps.59.893
    [15] 王泽锋, 胡永明, 孟洲, 罗洪, 倪明. 四阶声低通滤波光纤水听器的声压灵敏度频响特性. 物理学报, 2009, 58(10): 7034-7043. doi: 10.7498/aps.58.7034
    [16] 王泽锋, 胡永明, 孟洲, 罗洪, 倪明. 含侧腔的机械抗混叠声低通滤波光纤水听器. 物理学报, 2009, 58(12): 8352-8356. doi: 10.7498/aps.58.8352
    [17] 赵 瑞, 徐荣青, 沈中华, 陆 建, 倪晓武. 黏性液体中激光空泡脉动特性的理论和实验研究. 物理学报, 2006, 55(9): 4783-4788. doi: 10.7498/aps.55.4783
    [18] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究. 物理学报, 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [19] 江 建, 饶云江, 周昌学, 朱 涛. 基于光放大的光纤Fizeau应变传感器频分复用系统. 物理学报, 2004, 53(7): 2221-2225. doi: 10.7498/aps.53.2221
    [20] 王义平, 饶云江, 冉曾令, 朱 涛. 高频CO2激光脉冲写入的长周期光纤光栅传感器的特性研究. 物理学报, 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
计量
  • 文章访问数:  3740
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-05-05
  • 上网日期:  2023-05-16
  • 刊出日期:  2023-07-20

/

返回文章
返回