搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉冲非线性压缩技术的71.3 W飞秒激光产生

张旭 王兆华 王羡之 李佳文 李佳俊 赵国栋 魏志义

引用本文:
Citation:

基于脉冲非线性压缩技术的71.3 W飞秒激光产生

张旭, 王兆华, 王羡之, 李佳文, 李佳俊, 赵国栋, 魏志义

Pulse nonlinear compression generated 71.3 W femtosecond laser

Zhang Xu, Wang Zhao-Hua, Wang Xian-Zhi, Li Jia-Wen, Li Jia-Jun, Zhao Guo-Dong, Wei Zhi-Yi
PDF
HTML
导出引用
  • 采用了Herriott型多通腔对高平均功率皮秒激光进行非线性压缩产生飞秒激光的脉冲宽度压缩系统, 并通过ABCD矩阵对腔内本征模式分布进行了求解计算. 实验上通过利用多通腔脉冲压缩装置将100 W钕离子激光器输出的脉冲光谱宽度从0.20 nm展宽到2.75 nm, 光谱展宽比为13.75, B积分累积总量接近15.6. 利用透射光栅将补偿色散后脉冲宽度从12.5 ps压缩到了780 fs, 脉冲压缩比为16, 最终输出功率为71.3 W, 装置整体效率为71.3%. 该装置提供了一种更加结构简单, 成本廉价的高平均功率飞秒激光产生方式.
    The power of femtosecond lasers based on Ti: sapphire or Yb-doped gain media has reached a high level by using chirped pulse amplification. The dispersive elements are normally employed in CPA devices, thereby increasing the complexity and cost of the laser system. However, for the Nd-doped laser, its power can be amplified to hundreds of microjoules or even several millijoules directly without CPA technology. So compressing the picosecond pulse to obtain femtosecond laser pulses with hundreds of microjoules pulse energy by post-compression technology becomes meaningful. The pulsed post-compression technology is the combination of nonlinear spectral broadening and dispersion compensation. Currently, the most effective method of nonlinear spectral broadening is achieved through self-phase modulation. The multi-pass cell (MPC) device based on self-phase modulation for broadening spectral bandwidth has been extensively studied, since it was demonstrated. The MPC concept demonstrates significant practical benefits. Essentially, it requires only two curved mirrors and a Kerr medium in between, making it a cost-effective and easily implementable method. Moreover, the MPCs are robust, quite insensitive to beam pointing, and can evendeal with small mode mismatch without transmission losses. These favorable characteristics make MPCs very attractive not only for scientific applications, but also for commercial and facility laser systems where reliability is crucial. The striking progress of the technique in the past six years has made it possible to obtain high average power femtosecond laser.In this work, we demonstrate the generation of a high average power femtosecond laser pulse by nonlinearly compressing the picosecond pulse in the Herriott multi-pass cell device, and the distribution of eigenmode is analyzed. With this efficient and robust scheme, the spectrum is broadened from 0.20 nm to 2.75 nm, with a broadening ratio of 13.75, and the pulse duration of a picosecond amplifier is compressed from 1.25 ps to 780 fs, with a compression factor of 16. The average power before and after pulse compression are 100 W and 71.3 W respectively, so the overall transmission reaches 71.3%. The present scheme offers a viable route to low-cost and simple-configuration high-power femtosecond lasers driven by Nd-doped picosecond amplifiers.
      通信作者: 王兆华, zhwang@iphy.ac.cn ; 魏志义, zywei@iphy.ac.cn
    • 基金项目: 中国科学院稳定支持基础研究领域青年团队计划(批准号: YSBR-065)、国家自然科学基金(批准号: 11774410)和中国科学院战略性先导科技专项(批准号: XDB16030200)资助的课题.
      Corresponding author: Wang Zhao-Hua, zhwang@iphy.ac.cn ; Wei Zhi-Yi, zywei@iphy.ac.cn
    • Funds: Project supported by the Project for Young Scientists in Basic Research of Chinese Academy of Sciences (Grant No. YSBR-065), the National Natural Science Foundation of China (Grant No. 11774410), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16030200).
    [1]

    Kawata S, Sun H B, Tanaka T, et al. 2001 Nature 412 697Google Scholar

    [2]

    Saha S K, Wang D, Nguyen V H, Chang Y N, Oakdale J S, Chen S C 2019 Science 366 105Google Scholar

    [3]

    Gan Z S, Cao Y Y, Evans R A, Gu M 2013 Nat. Commun. 4 2061Google Scholar

    [4]

    何飞, 程亚 2007 中国激光 34 595

    He F, Cheng Y 2007 Chinese J. Lasers 34 595

    [5]

    Zheng C, Hu A M, Kihm K D, et al. 2015 Small 11 3007Google Scholar

    [6]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar

    [7]

    Bagnoud V, Salin F 2000 Appl. Phys. B:Lasers Opt. 70 S165Google Scholar

    [8]

    He P 2017 Ph. D. Dissertation (Xi'an: Xidian University) [何鹏 2017 博士学位论文 (西安: 西安电子科技大学)]

    [9]

    高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7

    Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chinese J. Lasers 39 7

    [10]

    王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117

    Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117

    [11]

    Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381Google Scholar

    [12]

    Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415Google Scholar

    [13]

    董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41

    Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chinese J. Lasers 48 41

    [14]

    Khazanov E A 2022 Quantum Electron. 52 208Google Scholar

    [15]

    Nagy T, Simon P, Veisz L 2021 Adv. Phys. :X 6 1845795

    [16]

    Nisoli M, DeSilvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar

    [17]

    Chen X W, Jullien A, Malvache A, et al. 2009 Opt. Lett. 34 1588Google Scholar

    [18]

    Su Y B, Fang S B, Wang S, Liang Y Y, Chang G Q, He X K, Wei Z Y 2022 Appl. Phys. Lett. 120 121105Google Scholar

    [19]

    Rolland C, Corkum P B 1988 J. Opt. Soc. Am. B 5 641Google Scholar

    [20]

    Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar

    [21]

    Shaykin A, Ginzburg V, Yakovlev I, et al. 2021 High Power Laser Sci. Eng. 9 e54Google Scholar

    [22]

    Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197Google Scholar

    [23]

    Hanna M, Delen X, Lavenu L, Guichard F, Zaouter Y, Druon F, Georges P 2017 J. Opt. Soc. Am. B 34 1340Google Scholar

    [24]

    Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929Google Scholar

    [25]

    Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511Google Scholar

    [26]

    Herriott D, Kompfner R, Kogelnik H 1964 Appl. Optics 3 523Google Scholar

    [27]

    Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y, Nubbemeyer T 2018 Opt. Lett. 43 5877Google Scholar

    [28]

    Balla P, Bin Wahid A, Sytcevich I, et al. 2020 Opt. Lett. 45 2572Google Scholar

  • 图 1  基于Herriott型多通腔的脉冲非线性压缩装置示意图

    Fig. 1.  Schematic diagram of Herriott MPC pulse nonlinear compression device.

    图 2  100 W钕离子激光器输出特性 (a)输出光谱; (b)输出脉冲宽度自相关信号

    Fig. 2.  Output charactertstic of 100 W Nd-doped laser: (a) Output spectrum; (b) autocorrelation signal of output pulse width.

    图 3  MPC腔内反射过程示意图

    Fig. 3.  Diagram of reflection process in MPC.

    图 4  MPC腔内本征模式分布

    Fig. 4.  Distribution of engine mode in MPC.

    图 5  测凹面镜上的反射点

    Fig. 5.  Reflection spot on concave mirror.

    图 6  凹面镜上反射点的分布顺序

    Fig. 6.  Distribution order of reflection spot on concave mirror.

    图 7  非线性展宽前后的光谱

    Fig. 7.  Spectrum before and after nonlinear broadening.

    图 8  展宽后光谱的脉冲变换极限

    Fig. 8.  FTL of spectrum after broadening.

    图 9  非线性压缩后脉冲自相关曲线

    Fig. 9.  The measured autocorrelation signal of output pulse after nonlinear compression.

    图 10  非线性压缩前后光束质量

    Fig. 10.  Beam quality before and after nonlinear compression.

  • [1]

    Kawata S, Sun H B, Tanaka T, et al. 2001 Nature 412 697Google Scholar

    [2]

    Saha S K, Wang D, Nguyen V H, Chang Y N, Oakdale J S, Chen S C 2019 Science 366 105Google Scholar

    [3]

    Gan Z S, Cao Y Y, Evans R A, Gu M 2013 Nat. Commun. 4 2061Google Scholar

    [4]

    何飞, 程亚 2007 中国激光 34 595

    He F, Cheng Y 2007 Chinese J. Lasers 34 595

    [5]

    Zheng C, Hu A M, Kihm K D, et al. 2015 Small 11 3007Google Scholar

    [6]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar

    [7]

    Bagnoud V, Salin F 2000 Appl. Phys. B:Lasers Opt. 70 S165Google Scholar

    [8]

    He P 2017 Ph. D. Dissertation (Xi'an: Xidian University) [何鹏 2017 博士学位论文 (西安: 西安电子科技大学)]

    [9]

    高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7

    Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chinese J. Lasers 39 7

    [10]

    王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117

    Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117

    [11]

    Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381Google Scholar

    [12]

    Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415Google Scholar

    [13]

    董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41

    Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chinese J. Lasers 48 41

    [14]

    Khazanov E A 2022 Quantum Electron. 52 208Google Scholar

    [15]

    Nagy T, Simon P, Veisz L 2021 Adv. Phys. :X 6 1845795

    [16]

    Nisoli M, DeSilvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar

    [17]

    Chen X W, Jullien A, Malvache A, et al. 2009 Opt. Lett. 34 1588Google Scholar

    [18]

    Su Y B, Fang S B, Wang S, Liang Y Y, Chang G Q, He X K, Wei Z Y 2022 Appl. Phys. Lett. 120 121105Google Scholar

    [19]

    Rolland C, Corkum P B 1988 J. Opt. Soc. Am. B 5 641Google Scholar

    [20]

    Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar

    [21]

    Shaykin A, Ginzburg V, Yakovlev I, et al. 2021 High Power Laser Sci. Eng. 9 e54Google Scholar

    [22]

    Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197Google Scholar

    [23]

    Hanna M, Delen X, Lavenu L, Guichard F, Zaouter Y, Druon F, Georges P 2017 J. Opt. Soc. Am. B 34 1340Google Scholar

    [24]

    Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929Google Scholar

    [25]

    Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511Google Scholar

    [26]

    Herriott D, Kompfner R, Kogelnik H 1964 Appl. Optics 3 523Google Scholar

    [27]

    Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y, Nubbemeyer T 2018 Opt. Lett. 43 5877Google Scholar

    [28]

    Balla P, Bin Wahid A, Sytcevich I, et al. 2020 Opt. Lett. 45 2572Google Scholar

  • [1] 方靖岳, 文之豪, 朱海碧涛, 李欣幸, 邓联文. 基于集成法布里-珀罗微腔阵列的16通道快照式多光谱成像. 物理学报, 2024, 73(7): 074205. doi: 10.7498/aps.73.20231775
    [2] 李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义. 基于平凹多通腔的非线性脉冲压缩技术. 物理学报, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [3] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术. 物理学报, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [4] 张鹏, 滕浩, 杨浩, 吕仁冲, 王柯俭, 朱江峰, 魏志义. 基于Herriott型多通结构的块材料展宽与棱栅对色散补偿的啁啾脉冲放大. 物理学报, 2022, 71(11): 114202. doi: 10.7498/aps.71.20212381
    [5] 孟凡, 张云佐, 冯魏巍, 吴鹏飞, 邹戈胤. 多模光纤中基于压缩传感的光谱探测. 物理学报, 2020, 69(13): 134204. doi: 10.7498/aps.69.20200014
    [6] 吕志国, 杨直, 李峰, 李强龙, 王屹山, 杨小君. 基于光纤中超短脉冲非线性传输机理与特定光谱选择技术的多波长飞秒激光的产生. 物理学报, 2018, 67(18): 184205. doi: 10.7498/aps.67.20181026
    [7] 秦爽, 王兆华, 王羡之, 何会军, 沈忠伟, 魏志义. 饱和功率密度下线性啁啾对交叉偏振波输出特性的影响. 物理学报, 2017, 66(9): 094206. doi: 10.7498/aps.66.094206
    [8] 刘欢, 曹士英, 孟飞, 林百科, 方占军. 覆盖可见光波长的掺Er光纤飞秒光学频率梳. 物理学报, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [9] 陈超, 田钢, 于术娟, 杨世平. 基于高斯型脉冲的非线性Ramsey干涉. 物理学报, 2013, 62(22): 225202. doi: 10.7498/aps.62.225202
    [10] 曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初. 掺Er光纤飞秒激光器载波包络位相偏移的探测. 物理学报, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [11] 曹士英, 方占军, 孟飞, 王强, 李天初. 双路光谱展宽的钛宝石飞秒光学频率梳系统. 物理学报, 2011, 60(8): 080601. doi: 10.7498/aps.60.080601
    [12] 吴洪, 王燕玲, 丁良恩. 双色场下紫外超短脉冲的频谱展宽. 物理学报, 2010, 59(6): 3973-3978. doi: 10.7498/aps.59.3973
    [13] 曹士英, 宋振明, 秦瑀, 王清月, 张志刚. 飞秒激光在不同位置温度梯度的惰性气体中成丝及光谱展宽的差异. 物理学报, 2009, 58(6): 3971-3976. doi: 10.7498/aps.58.3971
    [14] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 利用空心光纤探测飞秒脉冲在氩气中成丝过程中的光谱演变. 物理学报, 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
    [15] 孟祥国, 王继锁. 有限维Hilbert空间Roy型奇偶非线性相干态的振幅平方压缩. 物理学报, 2006, 55(4): 1774-1780. doi: 10.7498/aps.55.1774
    [16] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [17] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 束缚高压强气体中成丝的空心毛细管芯径对光谱展宽的影响. 物理学报, 2006, 55(10): 5294-5297. doi: 10.7498/aps.55.5294
    [18] 田金荣, 孙敬华, 魏志义, 王兆华, 令维军, 黄小军, 刘兰亭, 魏晓峰, 张 杰. ?ffner展宽器高倍率展宽脉冲的理论与实验研究. 物理学报, 2005, 54(3): 1200-1207. doi: 10.7498/aps.54.1200
    [19] 宋振明, 庞冬青, 张志刚, 王清月. 超短光脉冲在分段中空光波导中的光谱展宽和脉冲压缩. 物理学报, 2005, 54(6): 2769-2773. doi: 10.7498/aps.54.2769
    [20] 张林, 林仁明. 良腔情况吸收与色散混合型受驱动光学系统多光子过程的透射光谱. 物理学报, 1991, 40(3): 375-385. doi: 10.7498/aps.40.375
计量
  • 文章访问数:  3432
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-05-14
  • 上网日期:  2023-05-22
  • 刊出日期:  2023-07-20

/

返回文章
返回