搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切光束成像技术对纵深目标的成像

兰富洋 罗秀娟 陈明徕 张羽 刘辉

引用本文:
Citation:

剪切光束成像技术对纵深目标的成像

兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉

Sheared-beam imaging of object with depth information

Lan Fu-Yang, Luo Xiu-Juan, Chen Ming-Lai, Zhang Yu, Liu Hui
PDF
导出引用
  • 剪切光束成像技术是一种能透过大气湍流对远距离目标实现高分辨率成像的主动成像技术.现有相关研究中所采用的目标均为二维平面目标,然而现实中的目标一般都具有三维形貌,目标纵深对回波信号产生的延迟或对成像质量产生不利影响.从剪切光束成像理论出发,在二维目标成像模型的基础上建立了三维纵深目标成像模型,并利用该模型研究了两剪切光与参考光间的频差及目标纵深对成像的影响.仿真结果表明,随着拍频的增大,重构图像质量逐渐下降.剪切光束成像技术可通过减小拍频来提高真实目标成像质量.
    Sheared-beam imaging technique is a non-conventional imaging method which can be used to image remote objects through atmospheric turbulence without needing any adaptive optics. In this imaging technique, the target is coherently illuminated by three laser beams which are laterally sheared at the transmitter plane and arranged into an L shape. In addition, each beam is modulated by a slight frequency shift. The speckle intensity signals scattered from the target are received by a detector array, and then the image of target can be reconstructed by computer algorithm. By far, most of studies in this field have focused on two-dimensional imaging. In real conditions, however, the surface of targets we are concerned about reveals that different depths introduce various phase delays in the scattering signal from target. This delay causes the phase-shift errors to appear between the ideal target Fourier spectrum and the Fourier spectrum received by detector array. Finally, this would result in poor image quality and low resolution. In this study, a three-dimensional target imaging model is established based on the two-dimensional target imaging model. The influence of modulated beat frequency between sheared beam and reference beam is studied on the objects with depth information, and the result shows that large beat frequency may have an adverse effect on reconstructed images. The simulation we have developed for this three-dimensional imaging model uses three targets with different shapes. Each target is divided into several sub-blocks, and we set different depth values (within 10 m) for these blocks. Then beat frequencies are increased from 5 Hz to about 1 MHz, respectively. At each pair of frequencies, the reconstructed image is recorded. Srehl ratio is used as the measure of the imaging quality. Computer simulation results show that the Srehl ratio of reconstructed images descends with the increase of beat frequency, which is fully consistent with the theory of three-dimensional target imaging proposed before. Meanwhile, we find that the depth distribution of target also has an effect on imaging quality. As for actual space targets, the maximum depth is usually not more than 10 m. Compared with the influence caused by beat frequencies, the effect produced by depth distribution is negligible. Therefore when a space target is imaged, beat frequencies play the major role in reconstructing high-quality image. The results presented in this paper indicate that in order to achieve better imaging quality in the practical application, it is necessary to select the smallest beat frequency according to the detector performance and keep the candidate frequencies away from the low-frequency noise of the detector.
      通信作者: 兰富洋, lanfuyang@opt.cn
      Corresponding author: Lan Fu-Yang, lanfuyang@opt.cn
    [1]

    Li X Y, Gao X, Tang J, Feng L J 2015 Acta Photon. Sin. 44 0611002 (in Chinese)[李希宇, 高昕, 唐嘉, 冯灵洁2015光子学报44 0611002]

    [2]

    Fienup J R 2010 Imaging Systems Tucson, Arizona, USA, June 7-8, 2010 IMD2

    [3]

    Hutchin R A 2012 US Patent 20120162631[2012-06-28]

    [4]

    Hutchin R A 2012 US Patent 20120292481[2012-11-22]

    [5]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [6]

    Landesman B T, Kindilien P, Pierson R E 1997 Opt. Express 1 312

    [7]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [8]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [9]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [10]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [11]

    Goodman J W (Qin K C, Liu P S, Chen J B, Cao Q Z, translated) 2013 Introduction to Fourier Optics (3rd Ed.) (Beijing:Publishing House of Electronics Industry) p54(in Chinese)[古德曼(秦克诚, 刘培森, 陈家碧, 曹其智译) 2013傅里叶光学导论(3版) (北京:电子工业出版社)第54页]

    [12]

    Fairchild P, Payne I 2013 IEEE Aerospace Conference Big Sky Montana, USA, March 2-9, 2013 p1

    [13]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [14]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [15]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽2015物理学报64 124205]

    [16]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利2017物理学报66 024203]

    [17]

    Liu P S 1987 Fundamentals of Statistical Optics of Speckle (Beijing:Science Press) p7(in Chinese)[刘培森1987散斑统计光学基础(北京:科学出版社)第7页]

    [18]

    Corser B A 1996 M. S. Dissertation (Lubbock:Texas Tech University)

    [19]

    Dong L 2014 Laser Infrared 44 1350 (in Chinese)[董磊2014激光与红外44 1350]

    [20]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese)[司庆丹, 罗秀娟, 曾志红2014物理学报63 104203]

  • [1]

    Li X Y, Gao X, Tang J, Feng L J 2015 Acta Photon. Sin. 44 0611002 (in Chinese)[李希宇, 高昕, 唐嘉, 冯灵洁2015光子学报44 0611002]

    [2]

    Fienup J R 2010 Imaging Systems Tucson, Arizona, USA, June 7-8, 2010 IMD2

    [3]

    Hutchin R A 2012 US Patent 20120162631[2012-06-28]

    [4]

    Hutchin R A 2012 US Patent 20120292481[2012-11-22]

    [5]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [6]

    Landesman B T, Kindilien P, Pierson R E 1997 Opt. Express 1 312

    [7]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [8]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [9]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [10]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [11]

    Goodman J W (Qin K C, Liu P S, Chen J B, Cao Q Z, translated) 2013 Introduction to Fourier Optics (3rd Ed.) (Beijing:Publishing House of Electronics Industry) p54(in Chinese)[古德曼(秦克诚, 刘培森, 陈家碧, 曹其智译) 2013傅里叶光学导论(3版) (北京:电子工业出版社)第54页]

    [12]

    Fairchild P, Payne I 2013 IEEE Aerospace Conference Big Sky Montana, USA, March 2-9, 2013 p1

    [13]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [14]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [15]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽2015物理学报64 124205]

    [16]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利2017物理学报66 024203]

    [17]

    Liu P S 1987 Fundamentals of Statistical Optics of Speckle (Beijing:Science Press) p7(in Chinese)[刘培森1987散斑统计光学基础(北京:科学出版社)第7页]

    [18]

    Corser B A 1996 M. S. Dissertation (Lubbock:Texas Tech University)

    [19]

    Dong L 2014 Laser Infrared 44 1350 (in Chinese)[董磊2014激光与红外44 1350]

    [20]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese)[司庆丹, 罗秀娟, 曾志红2014物理学报63 104203]

  • [1] 陈明徕, 马彩文, 刘辉, 罗秀娟, 冯旭斌, 岳泽霖, 赵晶. 基于快速采样的剪切光束成像图像重构算法. 物理学报, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [2] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法. 物理学报, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [3] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [4] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新. 基于赝热光照明的单发光学散斑成像. 物理学报, 2019, 68(3): 034201. doi: 10.7498/aps.68.20181723
    [5] 程志远, 李治国, 折文集, 夏爱利. 激光相干场成像散斑噪声复合去噪方法. 物理学报, 2019, 68(5): 054206. doi: 10.7498/aps.68.20181578
    [6] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠. 分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析. 物理学报, 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [7] 兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉. 上行链路大气波前畸变对剪切光束成像技术的影响. 物理学报, 2018, 67(20): 204201. doi: 10.7498/aps.67.20181144
    [8] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析. 物理学报, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [9] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓. 四光束剪切相干成像目标重构算法研究. 物理学报, 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [10] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利. 基于全相位谱分析的剪切光束成像目标重构. 物理学报, 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [11] 曹蓓, 罗秀娟, 司庆丹, 曾志红. 相干场成像四光束相位闭合算法研究. 物理学报, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [12] 曹蓓, 罗秀娟, 陈明徕, 张羽. 相干场成像全相位目标直接重构法. 物理学报, 2015, 64(12): 124205. doi: 10.7498/aps.64.124205
    [13] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [14] 仲亚军, 刘娇, 梁文强, 赵生妹. 针对多散斑图的差分压缩鬼成像方案研究. 物理学报, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [15] 王大勇, 王云新, 郭莎, 戎路, 张亦卓. 基于多角度无透镜傅里叶变换数字全息的散斑噪声抑制成像研究. 物理学报, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [16] 宋洪胜, 程传福, 刘曼, 滕树云, 张宁玉. 散斑场相位涡旋及其传播特性的实验研究. 物理学报, 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [17] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究. 物理学报, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [18] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [19] 宋洪胜, 程传福, 张宁玉, 任晓荣, 滕树云, 徐至展. 强散射体产生的像面散斑对比度与随机表面及成像系统关系的研究. 物理学报, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [20] 姚焜, 许广宇, 郭光灿, 彭虎, 周佩玲. 双光束干涉产生的动态散斑. 物理学报, 1992, 41(2): 238-243. doi: 10.7498/aps.41.238
计量
  • 文章访问数:  6066
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-05-15
  • 刊出日期:  2017-10-05

/

返回文章
返回