搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺镱光纤激光器自漂白波长探究

陶蒙蒙 王亚民 王科 谌鸿伟 邵冲云 李乔木 叶景峰

引用本文:
Citation:

掺镱光纤激光器自漂白波长探究

陶蒙蒙, 王亚民, 王科, 谌鸿伟, 邵冲云, 李乔木, 叶景峰

Investigation of self-bleaching wavelength of Yb-doped fiber lasers

TAO Mengmeng, WANG Yamin, WANG Ke, CHEN Hongwei, SHAO Chongyun, LI Qiaomu, YE Jingfeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 辐射环境下, 增益光纤的辐致损耗会引起激光器输出性能的退化. 光漂白是降低辐射影响, 恢复激光器输出特性的一种有效方法. 本文对掺镱光纤激光器的辐照和光漂白特性开展了实验研究和模拟仿真. 在伽马辐照实验中, 激光器输出功率出现了明显的下降; 在漂白实验中, 观察到了激光器的性能恢复, 即自漂白现象. 为了摸清产生漂白效应的具体激光波长, 使用915, 976, 1070和1550 nm等不同波长激光测试了掺镱光纤内部辐致损耗的漂白特性, 明确了1 μm波段激光信号是引起掺镱光纤激光器性能恢复的主要因素, 而915, 976和1550 nm波段信号则无法实现对掺镱光纤的有效漂白. 测量了不同泵浦功率下掺镱光纤的漂白曲线, 并通过拟合得到了1070 nm光漂白下, 掺镱光纤辐致损耗的演化参数. 在此基础上, 计算给出了在辐照和光漂白条件下, 掺镱光纤内部辐致损耗的演化曲线; 结合激光器的辐射物理模型, 仿真给出了掺镱光纤激光器的功率演化曲线; 相关计算和仿真结果与实验测量数据变化趋势一致. 相关工作可为光纤激光器在辐射和漂白条件下性能演化预估提供技术支撑.
    In radiation environments, the radiation induced attenuation (RIA) of the active optical fiber can lead to a significant decline in the performance of fiber laser system. An effective way to solve this problem is to bleach the active fiber using pumps at certain wavelengths, namely photo-bleaching. Experiments have shown that output power of irradiated Yb-doped fiber laser experiences remarkable recovery under 976-nm pump. However, under 976-nm pump, signals at both 976 nm and 1070 nm co-exist in Yb-doped fiber. Moreover, it is difficult to distinguish which wavelength is responsible for the photo-bleaching process. Herein, a one-hundred-μm level Yb-doped fiber laser is irradiated with gamma-ray radiation. In the radiation process, a significant output decline from 129 W at 0 Gy to 81 W at 100 Gy is observed. Then, self-bleaching test is conducted with 976-nm pump. After 2-h bleaching, the output power is restored to 111 W, corresponding to a recovery ratio of about 37.0%. To verify the specific wavelength responsible for the performance recovery, photo-bleaching characteristics of Yb-doped fiber lasers are investigated under different pump wavelengths including 915, 976, 1070 and 1550 nm. Experiments show that laser signal at 1 μm waveband is the primary cause for the bleaching of Yb-doped fibers, while, the pump at 915, 976 and 1550 nm can hardly bleach the irradiated Yb-doped fiber. The RIA recovery curves of Yb-doped fibers are measured under different 1070-nm bleaching powers. And, related evolution parameters are obtained through curve fitting. With these parameters, the RIA evolution of the Yb-doped fiber and the corresponding output power evolution of the Yb-doped fiber laser in the radiation and bleaching process are simulated. Comparisons show that the numerical results are consistent with the measurements qualitatively, demonstrating the reliability of the model. This work has guiding significance for predicting the performance of fiber laser systems in radiation and bleaching environments.
  • 图 1  掺镱光纤激光器辐照、光漂白实验光路结构图(LD, 半导体激光器; PC, 泵浦合束器; HR FBG, 高反光纤光栅; PR FBG, 部分反射光纤光栅; YDF, 掺镱光纤; CPS, 泵浦剥除器; QBH, 防反射输出接头)

    Fig. 1.  Setup for the irradiation and photo-bleaching experiments of Yb-doped fiber lasers (LD, laser diode; PC, pump combiner; HR FBG, highly-reflective fiber Bragg grating; PR FBG, partially-reflective fiber Bragg grating; YDF, Yb-doped fiber; CPS, cladding pump striper; QBH, quasi-Brewster head).

    图 2  辐照、漂白前后激光器输出功率特性 (a) 功率演化; (b) 输出功率随泵浦功率变化

    Fig. 2.  Output characteristics of Yb-doped fiber lasers before and after radiation and photo-bleaching: (a) Output power evolution; (b) output power vs. pump power.

    图 3  1550 nm漂白下激光功率监测结果 (a) 55 mW; (b) 120 mW

    Fig. 3.  Recorded power information under 1550 nm bleaching: (a) 55 mW; (b) 120 mW.

    图 4  1550 nm漂白前后掺镱光纤的后向散射信号

    Fig. 4.  Backward scattering signal of Yb-doped fiber before and after 1550 nm bleaching.

    图 5  915 nm/976 nm漂白特性测试光路结构图(EDFL, 掺铒光纤激光器; OC, 耦合器; PM, 功率计)

    Fig. 5.  Schematic diagram for 915 nm/976 nm bleaching tests (EDFL, Er-doped fiber laser; OC, output coupler; PM, power-meter).

    图 6  915 nm/976 nm激光漂白下功率测量结果 (a) 915 nm; (b) 976 nm

    Fig. 6.  Recorded power information under 915 nm/976 nm bleaching: (a) 915 nm; (b) 976 nm.

    图 7  915 nm/976 nm漂白前后掺镱光纤的后向散射信号

    Fig. 7.  Backward scattering signal of Yb-doped fiber before and after 915 nm/976 nm bleaching.

    图 8  500 mW 1070 nm激光漂白下掺镱光纤输出端功率测量结果

    Fig. 8.  Recorded power information under 500 mW 1070 nm bleaching.

    图 9  1070 nm激光漂白前后掺镱光纤后向散射信号测量结果

    Fig. 9.  Backward scattering signal of Yb-doped fiber before and after 1070 nm bleaching.

    图 10  1070 nm激光漂白下掺镱光纤内部辐致损耗演化 (a) 输出端功率; (b) 辐致损耗

    Fig. 10.  Backward scattering signal of Yb-doped fiber before and after 1070 nm bleaching: (a) Recorded signal power; (b) radiation induced attenuation.

    图 11  1070 nm激光漂白下掺镱光纤内部辐致损耗演化参数 (a) 时间常数; (b) 稳态辐致损耗

    Fig. 11.  Radiation induced attenuation parameters of Yb-doped fiber under 1070 nm bleaching: (a) Time constant; (b) radiation induced attenuation at equilibrium state.

    图 12  不同功率1070 nm激光漂白下仿真模拟结果 (a) 掺镱光纤内部辐致损耗演化; (b) 掺镱光纤激光器输出功率演化

    Fig. 12.  Simulation results under 1070 nm bleaching: (a) Radiation induced attenuation inside the YDF; (b) output power evolution of the YDFL.

    表 1  实验所用掺镱光纤信息

    Table 1.  Parameters of the exploited YDF.

    参数 数值 参数 数值
    尺寸/μm 20/400 Yb离子浓度
    /(1025 m–3)
    4.95
    纤芯数值孔径 0.06 Al离子浓度
    /(1026 m–3)
    5.82
    976 nm处吸收系数
    /(dB·m–1)
    1.31
    P离子浓度
    /(1026 m–3)
    6.16
    下载: 导出CSV
  • [1]

    刘福华, 王平, 刘卫平, 谢红刚, 冯刚, 陈绍武, 武俊杰 2015 现代应用物理 6 202

    Liu F H, Wang P, Liu W P, Xie H G, Feng G, Chen S W, Wu J J 2015 Mod. Appl. Phys. 6 202

    [2]

    Girard S, Alessi A, Richard N, Martin-Samos L, Michele V D, Giacomazzi L, Agnello S, Francesca D D, Morana A, Winkler B, Reghioua I, Paillet P, Cannas M, Robin T, Boukenter A, Ouerdane Y 2019 Rev. Phys. 4 100032Google Scholar

    [3]

    Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdan Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015Google Scholar

    [4]

    Lezius M, Predehl K, Stöwer W, Turler A, Greiter M, Hoeschen Ch, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstron C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [5]

    李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003

    Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003

    [6]

    邵冲云, 于春雷, 胡丽丽 2020 中国激光 47 0500014Google Scholar

    Shao Ch Y, Yu Ch L, Hu L L 2020 Chin. J. Lasers 47 0500014Google Scholar

    [7]

    池俊杰, 姜诗琦, 张琳, 于淼, 王军龙 2018 激光与光电子学进展 55 061406Google Scholar

    Chi J J, Jiang S Q, Zhang L, Yu M, Wang J L 2018 Laser Optoelectron. Progress 55 061406Google Scholar

    [8]

    张汉伟, 王小林, 唐峰, 刘文广, 刘鹏宇, 许晓军, 肖余之, 陈金宝 2020 激光与光电子学进展 57 011406Google Scholar

    Zhang H W, Wang X L, Tang F, Liu W G, Liu P Y, Xu X J, Xiao Y Z, Chen J B 2020 Laser Optoelectron. Prog. 57 011406Google Scholar

    [9]

    Chen Y Sh, Xu H Zh, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430Google Scholar

    [10]

    Wang Y, Gao C, Peng K, Ni L, Wang X, Zhan H, Li Y, Jiang L, Lin A, Wang J, Jing F 2018 Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Hong Kong, China, July 29-August 3, 2018 p. F1B. 2

    [11]

    曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝 2024 物理学报 73 204202Google Scholar

    Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Si L, Chen J B 2024 Acta. Phys. Sin. 73 204202Google Scholar

    [12]

    Xiang G, Chen J, Wang X, Ye Y, Zhang H, Zhang J, Hua W 2024 Opt. Lett. 49 6301Google Scholar

    [13]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001Google Scholar

    [14]

    王博, 曹驰, 邢颍滨, 陈瑰, 戴能利, 李海清, 彭景刚, 李进延 2021 激光与光电子学进展 58 1516012Google Scholar

    Wang B, Cao C, Xing Y B, Chen G, Dai N L, Li H Q, Peng J G, Li J Y 2021 Laser Optoelectron. Prog. 58 1516012Google Scholar

    [15]

    Shao C, Yu C, Zhu Y, Zhou Q, Boulon G, Guzik M, Chen W, Hu L 2022 J. Lumin. 248 118939Google Scholar

    [16]

    Fox B P, Simmons-Potter K, Moore S W, Fisher J H, Meister D C 2009 Proceedings of SPIE 7434 74340CGoogle Scholar

    [17]

    Mady F, Guttilla A, Benabdesselam M, Blanc W 2019 Opt. Mater. Express 9 2466Google Scholar

    [18]

    Xing Y, Liu Y, Zhao N, Cao R, Wang Y, Yang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 Opt. Lett. 43 1075Google Scholar

    [19]

    Xing Y, Liu Y, Cao R, Liao L, Chu Y, Wang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 OSA Contin. 1 987Google Scholar

    [20]

    Manek-Hönninger I, Boullet J, Cardinal T, Guillen F, Ermeneux S, Podgorski M, Doua R, Salin F 2007 Opt. Express 15 1606Google Scholar

    [21]

    Chávez A, Kir'Yanov A, Barmenkov Y, Ilichev N N 2007 Laser Phys. Lett. 4 734Google Scholar

    [22]

    Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T, Mechin D, Tregoat D 2013 Opt. Lett. 38 196Google Scholar

    [23]

    Piccoli R, Gebavi H, Lablonde L, Cadier B, Robin T, Monteville A, Goffic O L, Landais D, Mechin D, Milanese D, Brand T, Taccheo S 2014 IEEE Photonics Technol. Lett. 26 50Google Scholar

    [24]

    Piccoli R, Robin T, Brand T, Kolotzbach U, Taccheo S 2014 Opt. Express 22 7638Google Scholar

    [25]

    Zhao N, Xing Y, Li J, Liao L, Wang Y, Peng J, Yang L, Dai N, Li H, Li J 2015 Opt. Express 23 25272Google Scholar

    [26]

    刘超平 2017 硕士学位论文 (武汉: 华中科技大学)

    Liu Ch P 2017 M. S. Thesis (Wuhan: Huazhong University of Science & Technology

    [27]

    Friebele E J, Gingerich M E. 1981 Appl. Opt. 20 3448Google Scholar

    [28]

    Zotov K V, Likhachev M E, Tomashuk A L, Kosolapov A F, Bubnov M M, Yashkov M V, Guryanov A N, Dianov E M 2008 IEEE Photonics Technol. Lett. 20 1476Google Scholar

    [29]

    Xing Y B, Huang H Q, Zhao N, Liao L, Li J Y, Dai N L 2015 Opt. Lett. 40 681Google Scholar

    [30]

    Xing Y B, Zhao N, Liao L, Wang Y B, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2015 Opt. Express 23 24236Google Scholar

    [31]

    Wang X, Sun Sh, Zheng Y, Yu M, Li S, Cao Y, Wang J 2023 Appl. Sci. 13 6146Google Scholar

    [32]

    Xiang G B, Zhang H W, Wang X L, Zhang J B, Chen H W, Lin C, Ye Y, Hua W H, Chen J B 2025 Photonics Res. 13 2362Google Scholar

    [33]

    陈金宝, 相广彪, 王小林, 张汉伟, 张江彬, 华卫红 2024 强激光与粒子束 36 121001

    Chen J B, Xiang G B, Wang X L, Zhang H W, Zhang J B, Hua W H 2024 High Power Laser Part. Beams 36 121001

    [34]

    Xiang G B, Wu J M, Zhang H W, Zhang J B, Chen H W, Wang Y M, Wang X L, Hua W H 2025 IEEE Trans. Nucl. Sci. 72 11Google Scholar

    [35]

    Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382Google Scholar

    [36]

    Shao Ch, Ren J, Wang F, Ollier N, Xie F, Zhang X, Zhang L, Yu Ch, Hu L 2018 J. Phys. Chem. B 122 2809

    [37]

    Zhang Y, Wang G, Zhao T, Zhang Y, Gao S, Cui X, Zhu Zh, Li Zh, She Sh, Hou Ch, Guo H 2025 J. Lightwave Technol. 43 3899Google Scholar

    [38]

    Tao M, Chen H, Feng G, Luan K, Wang F, Huang K, Ye X 2020 Opt. Express 28 10104Google Scholar

    [39]

    Wang K, Wang Y, Tao M, Cao H, Chen H, Ye J, Shen Y, Wang D 2024 Opt. Commun. 560 130472Google Scholar

    [40]

    Jetschke S, Unger S, Ropke U, Kirchhof J 2007 Opt. Express 15 14838Google Scholar

    [41]

    Jetschke S, Ropke U 2009 Opt. Lett. 34 109Google Scholar

    [42]

    Xie F, Shao Ch, Wang M, Lou F, Liu M, Yu Ch, Feng S, Ye X, Hu L 2019 J. Lightwave Tchnol. 37 1091Google Scholar

    [43]

    Arai T, Ichii K, Tanigawa S, Fujimaki M 2009 Proceedings of 2009 Conference on Optical Fiber Communication, Technical Digest Series San Diego, March 22-26, 2009 p2873

    [44]

    Tao M, Chen H, Feng G, Wang L, Ye J, Wang Y, Ye X, Chen W 2022 Laser Phys. 32 055101Google Scholar

    [45]

    Tao M, Wang Y, Wang K, Chen H, Ye J, Shen Y, Wang D, Ye X 2025 J. Opt. 54 867Google Scholar

  • [1] 蒋沛恒, 史朝督, 付士杰, 田浩, 盛泉, 史伟, 沈琪皓, 周鼎富, 姚建铨. 基于种子脉冲预整形的130 μJ线偏振单频12 μm纤芯铒镱共掺光纤激光器. 物理学报, doi: 10.7498/aps.74.20241371
    [2] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 马鹏飞, 王泽锋, 司磊, 陈金宝. 辐致损耗对单频单模掺镱光纤放大器功率提升的影响. 物理学报, doi: 10.7498/aps.74.20250418
    [3] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究. 物理学报, doi: 10.7498/aps.73.20240816
    [4] 文榆钧, 王鹏, 奚小明, 张汉伟, 黄良金, 杨欢, 闫志平, 杨保来, 史尘, 潘志勇, 王小林, 王泽锋, 许晓军. 激光二极管直接后向泵浦的高光束质量万瓦光纤激光器. 物理学报, doi: 10.7498/aps.71.20221433
    [5] 曹涧秋, 刘文博, 陈金宝, 陆启生. 单模热致超大模场掺镱光纤放大器的数值研究. 物理学报, doi: 10.7498/aps.66.064201
    [6] 熊中龙, 吴妍, 景锐平, 马冲, 龙蔚辉, 张超军, 程永进. 掺Yb硅酸盐玻璃的热漂白性能研究. 物理学报, doi: 10.7498/aps.65.044208
    [7] 贾玉磊, 朱政, 韩海年, 田文龙, 谢阳, 张龙, 魏志义. 掺镱硼酸钙氧钇飞秒激光器及在拉锥光纤中产生跨倍频程超连续光. 物理学报, doi: 10.7498/aps.64.054206
    [8] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, doi: 10.7498/aps.64.194205
    [9] 王玉宝, 齐晓辉, 沈阳, 姚繄蕾, 徐志敬, 潘玉寨. 超长腔碳纳米管锁模多波长掺镱光纤激光器. 物理学报, doi: 10.7498/aps.64.204205
    [10] 黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利. γ射线辐照对掺Yb光纤材料性能的影响. 物理学报, doi: 10.7498/aps.63.200201
    [11] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, doi: 10.7498/aps.63.084202
    [12] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, doi: 10.7498/aps.62.104210
    [13] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, doi: 10.7498/aps.61.214208
    [14] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, doi: 10.7498/aps.61.114204
    [15] 盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利. 辐照对掺Er硅酸盐玻璃吸收和发光特性的影响. 物理学报, doi: 10.7498/aps.61.116301
    [16] 刘越, 张巍, 冯雪, 刘小明. 损耗调制型掺铒光纤环形激光器混沌现象的实验研究. 物理学报, doi: 10.7498/aps.58.2971
    [17] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, doi: 10.7498/aps.56.3917
    [18] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, doi: 10.7498/aps.55.4679
    [19] 王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚. 离子注入GaAs实现双包层掺镱光纤激光器被动调Q锁模. 物理学报, doi: 10.7498/aps.53.1810
    [20] 孙军强, 黄德修, 李再光. 掺铒光纤激光器的自持脉冲. 物理学报, doi: 10.7498/aps.45.960
计量
  • 文章访问数:  390
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-29
  • 修回日期:  2025-08-25
  • 上网日期:  2025-09-05

/

返回文章
返回