-
辐射环境下, 增益光纤的辐致损耗会引起激光器输出性能的退化. 光漂白是降低辐射影响, 恢复激光器输出特性的一种有效方法. 本文对掺镱光纤激光器的辐照和光漂白特性开展了实验研究和模拟仿真. 在伽马辐照实验中, 激光器输出功率出现了明显的下降; 在漂白实验中, 观察到了激光器的性能恢复, 即自漂白现象. 为了摸清产生漂白效应的具体激光波长, 使用915, 976, 1070和1550 nm等不同波长激光测试了掺镱光纤内部辐致损耗的漂白特性, 明确了1 μm波段激光信号是引起掺镱光纤激光器性能恢复的主要因素, 而915, 976和1550 nm波段信号则无法实现对掺镱光纤的有效漂白. 测量了不同泵浦功率下掺镱光纤的漂白曲线, 并通过拟合得到了1070 nm光漂白下, 掺镱光纤辐致损耗的演化参数. 在此基础上, 计算给出了在辐照和光漂白条件下, 掺镱光纤内部辐致损耗的演化曲线; 结合激光器的辐射物理模型, 仿真给出了掺镱光纤激光器的功率演化曲线; 相关计算和仿真结果与实验测量数据变化趋势一致. 相关工作可为光纤激光器在辐射和漂白条件下性能演化预估提供技术支撑.In radiation environments, the radiation induced attenuation (RIA) of the active optical fiber can lead to a significant decline in the performance of fiber laser system. An effective way to solve this problem is to bleach the active fiber using pumps at certain wavelengths, namely photo-bleaching. Experiments have shown that output power of irradiated Yb-doped fiber laser experiences remarkable recovery under 976-nm pump. However, under 976-nm pump, signals at both 976 nm and 1070 nm co-exist in Yb-doped fiber. Moreover, it is difficult to distinguish which wavelength is responsible for the photo-bleaching process. Herein, a one-hundred-μm level Yb-doped fiber laser is irradiated with gamma-ray radiation. In the radiation process, a significant output decline from 129 W at 0 Gy to 81 W at 100 Gy is observed. Then, self-bleaching test is conducted with 976-nm pump. After 2-h bleaching, the output power is restored to 111 W, corresponding to a recovery ratio of about 37.0%. To verify the specific wavelength responsible for the performance recovery, photo-bleaching characteristics of Yb-doped fiber lasers are investigated under different pump wavelengths including 915, 976, 1070 and 1550 nm. Experiments show that laser signal at 1 μm waveband is the primary cause for the bleaching of Yb-doped fibers, while, the pump at 915, 976 and 1550 nm can hardly bleach the irradiated Yb-doped fiber. The RIA recovery curves of Yb-doped fibers are measured under different 1070-nm bleaching powers. And, related evolution parameters are obtained through curve fitting. With these parameters, the RIA evolution of the Yb-doped fiber and the corresponding output power evolution of the Yb-doped fiber laser in the radiation and bleaching process are simulated. Comparisons show that the numerical results are consistent with the measurements qualitatively, demonstrating the reliability of the model. This work has guiding significance for predicting the performance of fiber laser systems in radiation and bleaching environments.
-
Keywords:
- radiation induced attenuation /
- Yb-doped fiber laser /
- photo-bleaching
-
图 1 掺镱光纤激光器辐照、光漂白实验光路结构图(LD, 半导体激光器; PC, 泵浦合束器; HR FBG, 高反光纤光栅; PR FBG, 部分反射光纤光栅; YDF, 掺镱光纤; CPS, 泵浦剥除器; QBH, 防反射输出接头)
Fig. 1. Setup for the irradiation and photo-bleaching experiments of Yb-doped fiber lasers (LD, laser diode; PC, pump combiner; HR FBG, highly-reflective fiber Bragg grating; PR FBG, partially-reflective fiber Bragg grating; YDF, Yb-doped fiber; CPS, cladding pump striper; QBH, quasi-Brewster head).
表 1 实验所用掺镱光纤信息
Table 1. Parameters of the exploited YDF.
参数 数值 参数 数值 尺寸/μm 20/400 Yb离子浓度
/(1025 m–3)4.95 纤芯数值孔径 0.06 Al离子浓度
/(1026 m–3)5.82 976 nm处吸收系数
/(dB·m–1)1.31
P离子浓度
/(1026 m–3)6.16 -
[1] 刘福华, 王平, 刘卫平, 谢红刚, 冯刚, 陈绍武, 武俊杰 2015 现代应用物理 6 202
Liu F H, Wang P, Liu W P, Xie H G, Feng G, Chen S W, Wu J J 2015 Mod. Appl. Phys. 6 202
[2] Girard S, Alessi A, Richard N, Martin-Samos L, Michele V D, Giacomazzi L, Agnello S, Francesca D D, Morana A, Winkler B, Reghioua I, Paillet P, Cannas M, Robin T, Boukenter A, Ouerdane Y 2019 Rev. Phys. 4 100032
Google Scholar
[3] Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdan Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015
Google Scholar
[4] Lezius M, Predehl K, Stöwer W, Turler A, Greiter M, Hoeschen Ch, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstron C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425
Google Scholar
[5] 李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003
Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003
[6] 邵冲云, 于春雷, 胡丽丽 2020 中国激光 47 0500014
Google Scholar
Shao Ch Y, Yu Ch L, Hu L L 2020 Chin. J. Lasers 47 0500014
Google Scholar
[7] 池俊杰, 姜诗琦, 张琳, 于淼, 王军龙 2018 激光与光电子学进展 55 061406
Google Scholar
Chi J J, Jiang S Q, Zhang L, Yu M, Wang J L 2018 Laser Optoelectron. Progress 55 061406
Google Scholar
[8] 张汉伟, 王小林, 唐峰, 刘文广, 刘鹏宇, 许晓军, 肖余之, 陈金宝 2020 激光与光电子学进展 57 011406
Google Scholar
Zhang H W, Wang X L, Tang F, Liu W G, Liu P Y, Xu X J, Xiao Y Z, Chen J B 2020 Laser Optoelectron. Prog. 57 011406
Google Scholar
[9] Chen Y Sh, Xu H Zh, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430
Google Scholar
[10] Wang Y, Gao C, Peng K, Ni L, Wang X, Zhan H, Li Y, Jiang L, Lin A, Wang J, Jing F 2018 Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Hong Kong, China, July 29-August 3, 2018 p. F1B. 2
[11] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝 2024 物理学报 73 204202
Google Scholar
Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Si L, Chen J B 2024 Acta. Phys. Sin. 73 204202
Google Scholar
[12] Xiang G, Chen J, Wang X, Ye Y, Zhang H, Zhang J, Hua W 2024 Opt. Lett. 49 6301
Google Scholar
[13] Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001
Google Scholar
[14] 王博, 曹驰, 邢颍滨, 陈瑰, 戴能利, 李海清, 彭景刚, 李进延 2021 激光与光电子学进展 58 1516012
Google Scholar
Wang B, Cao C, Xing Y B, Chen G, Dai N L, Li H Q, Peng J G, Li J Y 2021 Laser Optoelectron. Prog. 58 1516012
Google Scholar
[15] Shao C, Yu C, Zhu Y, Zhou Q, Boulon G, Guzik M, Chen W, Hu L 2022 J. Lumin. 248 118939
Google Scholar
[16] Fox B P, Simmons-Potter K, Moore S W, Fisher J H, Meister D C 2009 Proceedings of SPIE 7434 74340C
Google Scholar
[17] Mady F, Guttilla A, Benabdesselam M, Blanc W 2019 Opt. Mater. Express 9 2466
Google Scholar
[18] Xing Y, Liu Y, Zhao N, Cao R, Wang Y, Yang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 Opt. Lett. 43 1075
Google Scholar
[19] Xing Y, Liu Y, Cao R, Liao L, Chu Y, Wang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 OSA Contin. 1 987
Google Scholar
[20] Manek-Hönninger I, Boullet J, Cardinal T, Guillen F, Ermeneux S, Podgorski M, Doua R, Salin F 2007 Opt. Express 15 1606
Google Scholar
[21] Chávez A, Kir'Yanov A, Barmenkov Y, Ilichev N N 2007 Laser Phys. Lett. 4 734
Google Scholar
[22] Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T, Mechin D, Tregoat D 2013 Opt. Lett. 38 196
Google Scholar
[23] Piccoli R, Gebavi H, Lablonde L, Cadier B, Robin T, Monteville A, Goffic O L, Landais D, Mechin D, Milanese D, Brand T, Taccheo S 2014 IEEE Photonics Technol. Lett. 26 50
Google Scholar
[24] Piccoli R, Robin T, Brand T, Kolotzbach U, Taccheo S 2014 Opt. Express 22 7638
Google Scholar
[25] Zhao N, Xing Y, Li J, Liao L, Wang Y, Peng J, Yang L, Dai N, Li H, Li J 2015 Opt. Express 23 25272
Google Scholar
[26] 刘超平 2017 硕士学位论文 (武汉: 华中科技大学)
Liu Ch P 2017 M. S. Thesis (Wuhan: Huazhong University of Science & Technology
[27] Friebele E J, Gingerich M E. 1981 Appl. Opt. 20 3448
Google Scholar
[28] Zotov K V, Likhachev M E, Tomashuk A L, Kosolapov A F, Bubnov M M, Yashkov M V, Guryanov A N, Dianov E M 2008 IEEE Photonics Technol. Lett. 20 1476
Google Scholar
[29] Xing Y B, Huang H Q, Zhao N, Liao L, Li J Y, Dai N L 2015 Opt. Lett. 40 681
Google Scholar
[30] Xing Y B, Zhao N, Liao L, Wang Y B, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2015 Opt. Express 23 24236
Google Scholar
[31] Wang X, Sun Sh, Zheng Y, Yu M, Li S, Cao Y, Wang J 2023 Appl. Sci. 13 6146
Google Scholar
[32] Xiang G B, Zhang H W, Wang X L, Zhang J B, Chen H W, Lin C, Ye Y, Hua W H, Chen J B 2025 Photonics Res. 13 2362
Google Scholar
[33] 陈金宝, 相广彪, 王小林, 张汉伟, 张江彬, 华卫红 2024 强激光与粒子束 36 121001
Chen J B, Xiang G B, Wang X L, Zhang H W, Zhang J B, Hua W H 2024 High Power Laser Part. Beams 36 121001
[34] Xiang G B, Wu J M, Zhang H W, Zhang J B, Chen H W, Wang Y M, Wang X L, Hua W H 2025 IEEE Trans. Nucl. Sci. 72 11
Google Scholar
[35] Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382
Google Scholar
[36] Shao Ch, Ren J, Wang F, Ollier N, Xie F, Zhang X, Zhang L, Yu Ch, Hu L 2018 J. Phys. Chem. B 122 2809
[37] Zhang Y, Wang G, Zhao T, Zhang Y, Gao S, Cui X, Zhu Zh, Li Zh, She Sh, Hou Ch, Guo H 2025 J. Lightwave Technol. 43 3899
Google Scholar
[38] Tao M, Chen H, Feng G, Luan K, Wang F, Huang K, Ye X 2020 Opt. Express 28 10104
Google Scholar
[39] Wang K, Wang Y, Tao M, Cao H, Chen H, Ye J, Shen Y, Wang D 2024 Opt. Commun. 560 130472
Google Scholar
[40] Jetschke S, Unger S, Ropke U, Kirchhof J 2007 Opt. Express 15 14838
Google Scholar
[41] Jetschke S, Ropke U 2009 Opt. Lett. 34 109
Google Scholar
[42] Xie F, Shao Ch, Wang M, Lou F, Liu M, Yu Ch, Feng S, Ye X, Hu L 2019 J. Lightwave Tchnol. 37 1091
Google Scholar
[43] Arai T, Ichii K, Tanigawa S, Fujimaki M 2009 Proceedings of 2009 Conference on Optical Fiber Communication, Technical Digest Series San Diego, March 22-26, 2009 p2873
[44] Tao M, Chen H, Feng G, Wang L, Ye J, Wang Y, Ye X, Chen W 2022 Laser Phys. 32 055101
Google Scholar
[45] Tao M, Wang Y, Wang K, Chen H, Ye J, Shen Y, Wang D, Ye X 2025 J. Opt. 54 867
Google Scholar
计量
- 文章访问数: 390
- PDF下载量: 13
- 被引次数: 0