搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电荷态离子碰撞诱导氟甲烷分子三价离子解离

谭旭 房凡 张煜 孙德昊 吴怡娇 殷浩 孟天鸣 屠秉晟 魏宝仁

引用本文:
Citation:

高电荷态离子碰撞诱导氟甲烷分子三价离子解离

谭旭, 房凡, 张煜, 孙德昊, 吴怡娇, 殷浩, 孟天鸣, 屠秉晟, 魏宝仁
cstr: 32037.14.aps.74.20251099

Dissociation of fluoromethane trication induced by highly charged ion collisions

TAN Xu, FANG Fan, ZHANG Yu, SUN Dehao, WU Yijiao, YIN Hao, MENG Tianming, TU Bingsheng, WEI Baoren
cstr: 32037.14.aps.74.20251099
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 研究分子的碎裂机制以及碎片的动能分布, 有助于理解其在等离子体物理、生物组织的辐射损伤和星际化学等方面的重要作用. 本文利用冷靶反冲离子动量谱仪开展了3 keV/u的Ar8+离子束与氟甲烷气体分子束的碰撞实验, 聚焦CH3F3+离子C—F键和C—H键断裂后形成H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+这一三体碎裂通道, 测得3个碎片离子的三维动量. 借助离子-离子动能谱、Newton图和Dalitz图展示碎片的动能与动量关联, 分析了H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道的解离机制. 研究发现, 该通道存在协同碎裂以及通过中间体CH2F2+顺序碎裂两种解离方式, 其中协同碎裂占主导地位. 此外, 实验上观测到两种不同动力学特征的协同碎裂过程, 表明CH3F3+离子中H原子可以具有不同的化学环境. 这可能是由于分子异构化产生不同分子构型或者Jahn-Teller效应使得分子产生不同C—H键所致.
    Investigating molecular fragmentation mechanisms and the kinetic energy distributions of fragments can offer crucial insights into their roles in plasma physics, radiation-induced damage in biological tissues, and interstellar chemistry. In this study, we conduct the experiments on collision between 3 keV/u ${\rm Ar}^{8+} $ ions and CH3F molecules by using a cold target recoil ion momentum spectrometer (COLTRIMS).We focus on the three-body fragmentation channel H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ resulting from C—F and C—H bond cleavage in CH3F3+ ions, and measure the three-dimensional momentum vectors of all fragment ions. The fragmentation mechanism involved is analyzed using ion-ion kinetic energy correlation spectra, Newton diagrams, Dalitz plots, and other correlation spectra.Our results reveal two different dissociation mechanisms for the H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel, i.e. concerted fragmentation and sequential fragmentation, with the former one being dominant. In the sequential fragmentation process, H+ and the intermediate CH2F2+ are firstly formed, followed by further fragmentation of the intermediates into $ {\mathrm{C}\mathrm{H}}_{2}^{+} $ and F+. No sequential pathways involving HF2+ or $ {\mathrm{C}\mathrm{H}}_{3}^{2+} $ intermediates are identified. Furthermore, we observe two types of concerted fragmentation processes with different dynamical characteristics, suggesting that hydrogen atoms in CH3F3+ may occupy different chemical environments. This phenomenon can originate from either molecular isomerization producing different structural geometries or the Jahn-Teller effect leading to inequivalent C—H bonds. This study reveals the three-body dissociation dynamics of CH3F3+ induced by highly charged ion collisions, highlighting the significant role of the Jahn-Teller effect or molecular isomerization in the ionic dissociation of polyatomic molecules.
      通信作者: 张煜, zyclay@outlook.com ; 魏宝仁, brwei@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12374227, 12104185)、国家重点研发计划(批准号: 2022YFA1602504)和嘉兴市青年科技人才专项(批准号: 2024AY40007)资助的课题.
      Corresponding author: ZHANG Yu, zyclay@outlook.com ; WEI Baoren, brwei@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374227, 12104185), the National Key R&D Program of China (Grant No. 2022YFA1602504), and the Young Sci-Tech Talent Special Program of Jiaxing, China (Grant No. 2024AY40007).
    [1]

    Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [2]

    Reiter D, Janev R K 2010 Contrib. Plasma Phys. 50 986Google Scholar

    [3]

    Wheatley A K, Juno J A, Wang J J, Selva K J, Reynaldi A, Tan H X, Lee W S, Wragg K M, Kelly H G, Esterbauer R, Davis S K, Kent H E, Mordant F L, Schlub T E, Gordon D L, Khoury D S, Subbarao K, Cromer D, Gordon T P, Chung A W, Davenport M P, Kent S J 2021 Nat. Commun. 12 1162Google Scholar

    [4]

    Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062Google Scholar

    [5]

    Price S D, Roithová J 2011 Phys. Chem. Chem. Phys. 13 18251Google Scholar

    [6]

    Matsika S, Spanner M, Kotur M, Weinacht T C 2013 J. Phys. Chem. A 117 12796Google Scholar

    [7]

    Ren B H, Ma P F, Zhang Y, Wei L, Han J, Xia Z H, Wang J R, Meng T M, Yu W D, Zou Y M, Yang C L, Wei B R 2022 Phys. Rev. A 106 012805Google Scholar

    [8]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar

    [9]

    张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文 2025 物理学报 74 063401Google Scholar

    Zhang Z Q, Yan S C, Tao C Y, Yu X, Zhang S F, Ma X W 2025 Acta Phys. Sin. 74 063401Google Scholar

    [10]

    Das R, Bhojani A K, Madhusudhan P, Nimma V, Bhardwaj P, Singh D K, Kushawaha R K 2025 J. Phys. B: At. Mol. Opt. Phys. 58 045603Google Scholar

    [11]

    Wang E L, Shan X, Chen L, Pfeifer T, Chen X J, Ren X G, Dorn A 2020 J. Phys. Chem. A 124 2785Google Scholar

    [12]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [13]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [14]

    Wang B, Han J, Zhu X L, Wei L, Ren B H, Zhang Y, Yu W D, Yan S C, Ma X W, Zou Y M, Chen L, Wei B R 2021 Phys. Rev. A 103 042810Google Scholar

    [15]

    Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju K P, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar

    [16]

    Burger C, Kling N G, Siemering R, Alnaser A S, Bergues B, Azzeer A M, Moshammer R, de Vivie-Riedle R, Kübel M, Kling M F 2016 Faraday Discuss. 194 495Google Scholar

    [17]

    Hishikawa A, Matsuda A, Takahashi E J, Fushitani M 2008 J. Chem. Phys. 128 084302Google Scholar

    [18]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215Google Scholar

    [19]

    Das R, Pandey D K, Soumyashree S, Madhusudhan P, Nimma V, Bhardwaj P, Muhammed S K M, Singh D K, Kushawaha R K 2022 Phys. Chem. Chem. Phys. 24 18306Google Scholar

    [20]

    Townsend D, Lahankar S A, Lee S K, Chambreau S D, Suits A G, Zhang X, Rheinecker J, Harding L B, Bowman J M 2004 Science 306 1158Google Scholar

    [21]

    Nakai K, Kato T, Kono H, Yamanouchi K 2013 J. Chem. Phys. 139 181103Google Scholar

    [22]

    Castrovilli M C, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R 2018 J. Phys. Chem. Lett. 9 6012Google Scholar

    [23]

    Ma P, Wang C C, Li X K, Yu X T, Tian X, Hu W H, Yu J Q, Luo S Z, Ding D J 2017 J. Chem. Phys. 146 244305Google Scholar

    [24]

    Kokkonen E, Vapa M, Bučar K, Jänkälä K, Cao W, Žitnik M, Huttula M 2016 Phys. Rev. A 94 033409Google Scholar

    [25]

    Masuoka T, Koyano I 1991 J. Chem. Phys. 95 909Google Scholar

    [26]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156Google Scholar

    [27]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [28]

    Walsh N, Sankari A, Laksman J, Andersson T, Oghbaie S, Afaneh F, Månsson E P, Gisselbrecht M, Sorensen S L 2015 Phys. Chem. Chem. Phys. 17 18944Google Scholar

    [29]

    Zhou J Q, Li Y T, Wang Y Y, Jia S K, Xue X R, Yang T, Zhang Z, Dorn A, Ren X G 2021 Phys. Rev. A 104 032807Google Scholar

    [30]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [31]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [32]

    Pearson R G 1975 Proc. Nat. Acad. Sci. USA 72 2104Google Scholar

    [33]

    Bersuker I B 2001 Chem. Rev. 101 1067Google Scholar

    [34]

    Bersuker I B 2021 Chem. Rev. 121 1463Google Scholar

    [35]

    Wörner H J, Merkt F 2009 Angew. Chem. Int. Ed. 48 6404Google Scholar

    [36]

    Jahn H A, Teller E 1937 Proc. R. Soc. London Ser. A 161 220Google Scholar

    [37]

    Matselyukh D, Svoboda V, Wörner H J 2025 Nat. Commun. 16 6540Google Scholar

    [38]

    Wang J G, Dong B W, Zhang M, Deng Y K, Jian X P, Li Z, Liu Y Q 2024 J. Am. Chem. Soc. 146 10443Google Scholar

    [39]

    Kugel' K I, Khomskiĭ D I 1982 Sov. Phys. Usp. 25 231Google Scholar

    [40]

    O’Brien M C, Chancey C C 1993 Am. J. Phys. 61 688Google Scholar

    [41]

    Zhou J Q, Wu L, Belina M, Skitnevskaya A D, Jia S K, Xue X R, Hao X T, Zeng Q R, Ma Q B, Zhao Y T, Li X K, He L H, Luo S Z, Zhang D D, Wang C C, Trofimov A B, Slavíček P, Ding D J, Ren X G 2025 Nat. Commun. 16 5838Google Scholar

    [42]

    Zhao X N, Zhang X Y, Liu H, Ma P, Li X K, Wang C C, Luo S Z, Ding D J 2025 Phys. Rev. A 111 053106Google Scholar

    [43]

    Zhou J Q, Belina M, Jia S K, Xue X R, Hao X T, Ren X G, Slavíček P 2022 J. Phys. Chem. Lett. 13 10603Google Scholar

    [44]

    Yuan H, Gao Y, Yang B, Gu S F, Lin H, Guo D L, Liu J L, Zhang S F, Ma X W, Xu S Y 2024 Phys. Rev. Lett. 133 193002Google Scholar

    [45]

    Duflot D, Robbe J M, Flament J P 1995 J. Chem. Phys. 103 10571Google Scholar

    [46]

    Matsubara T 2023 J. Phys. Chem. A 127 4801Google Scholar

  • 图 1  CH3F3+离子解离的三离子TOF符合谱

    Fig. 1.  Coincidence TOF map of CH3F3+ dissociation involving three ionic fragments.

    图 2  H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道的Newton图

    Fig. 2.  Newton diagrams of H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel.

    图 3  $ {\mathrm{C}\mathrm{H}}_{2}^{+} $离子和F+离子的动能关联谱

    Fig. 3.  Kinetic energy correlation spectra of $ {\mathrm{C}\mathrm{H}}_{2}^{+} $ ions and F+ ions.

    图 4  H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道的Dalitz图, 其中(a), (b), (c)分别为图3中A, B和C区域中的碎裂事件

    Fig. 4.  Dalitz diagrams of H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel, (a), (b), (c) corresponding to fragmentation events in regions A, B, and C of Fig. 3, respectively.

    图 5  H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道所有事件以及图3中不同区域事件的KER谱

    Fig. 5.  KER spectra for all events of H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel and events in different regions of Fig. 3.

    图 6  $ {\mathrm{K}\mathrm{E}\mathrm{R}}_{{\mathrm{H}\mathrm{F}}^{2+}} $和$ {\theta }_{{\mathrm{C}\mathrm{H}}_{2}^{+}, {\mathrm{H}}^{+}} $的关联谱

    Fig. 6.  Correlation spectrum of $ {\mathrm{K}\mathrm{E}\mathrm{R}}_{{\mathrm{H}\mathrm{F}}^{2+}} $and $ {\theta }_{{\mathrm{C}\mathrm{H}}_{2}^{+}, {\mathrm{H}}^{+}} $.

  • [1]

    Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [2]

    Reiter D, Janev R K 2010 Contrib. Plasma Phys. 50 986Google Scholar

    [3]

    Wheatley A K, Juno J A, Wang J J, Selva K J, Reynaldi A, Tan H X, Lee W S, Wragg K M, Kelly H G, Esterbauer R, Davis S K, Kent H E, Mordant F L, Schlub T E, Gordon D L, Khoury D S, Subbarao K, Cromer D, Gordon T P, Chung A W, Davenport M P, Kent S J 2021 Nat. Commun. 12 1162Google Scholar

    [4]

    Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062Google Scholar

    [5]

    Price S D, Roithová J 2011 Phys. Chem. Chem. Phys. 13 18251Google Scholar

    [6]

    Matsika S, Spanner M, Kotur M, Weinacht T C 2013 J. Phys. Chem. A 117 12796Google Scholar

    [7]

    Ren B H, Ma P F, Zhang Y, Wei L, Han J, Xia Z H, Wang J R, Meng T M, Yu W D, Zou Y M, Yang C L, Wei B R 2022 Phys. Rev. A 106 012805Google Scholar

    [8]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar

    [9]

    张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文 2025 物理学报 74 063401Google Scholar

    Zhang Z Q, Yan S C, Tao C Y, Yu X, Zhang S F, Ma X W 2025 Acta Phys. Sin. 74 063401Google Scholar

    [10]

    Das R, Bhojani A K, Madhusudhan P, Nimma V, Bhardwaj P, Singh D K, Kushawaha R K 2025 J. Phys. B: At. Mol. Opt. Phys. 58 045603Google Scholar

    [11]

    Wang E L, Shan X, Chen L, Pfeifer T, Chen X J, Ren X G, Dorn A 2020 J. Phys. Chem. A 124 2785Google Scholar

    [12]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [13]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [14]

    Wang B, Han J, Zhu X L, Wei L, Ren B H, Zhang Y, Yu W D, Yan S C, Ma X W, Zou Y M, Chen L, Wei B R 2021 Phys. Rev. A 103 042810Google Scholar

    [15]

    Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju K P, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar

    [16]

    Burger C, Kling N G, Siemering R, Alnaser A S, Bergues B, Azzeer A M, Moshammer R, de Vivie-Riedle R, Kübel M, Kling M F 2016 Faraday Discuss. 194 495Google Scholar

    [17]

    Hishikawa A, Matsuda A, Takahashi E J, Fushitani M 2008 J. Chem. Phys. 128 084302Google Scholar

    [18]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215Google Scholar

    [19]

    Das R, Pandey D K, Soumyashree S, Madhusudhan P, Nimma V, Bhardwaj P, Muhammed S K M, Singh D K, Kushawaha R K 2022 Phys. Chem. Chem. Phys. 24 18306Google Scholar

    [20]

    Townsend D, Lahankar S A, Lee S K, Chambreau S D, Suits A G, Zhang X, Rheinecker J, Harding L B, Bowman J M 2004 Science 306 1158Google Scholar

    [21]

    Nakai K, Kato T, Kono H, Yamanouchi K 2013 J. Chem. Phys. 139 181103Google Scholar

    [22]

    Castrovilli M C, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R 2018 J. Phys. Chem. Lett. 9 6012Google Scholar

    [23]

    Ma P, Wang C C, Li X K, Yu X T, Tian X, Hu W H, Yu J Q, Luo S Z, Ding D J 2017 J. Chem. Phys. 146 244305Google Scholar

    [24]

    Kokkonen E, Vapa M, Bučar K, Jänkälä K, Cao W, Žitnik M, Huttula M 2016 Phys. Rev. A 94 033409Google Scholar

    [25]

    Masuoka T, Koyano I 1991 J. Chem. Phys. 95 909Google Scholar

    [26]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156Google Scholar

    [27]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [28]

    Walsh N, Sankari A, Laksman J, Andersson T, Oghbaie S, Afaneh F, Månsson E P, Gisselbrecht M, Sorensen S L 2015 Phys. Chem. Chem. Phys. 17 18944Google Scholar

    [29]

    Zhou J Q, Li Y T, Wang Y Y, Jia S K, Xue X R, Yang T, Zhang Z, Dorn A, Ren X G 2021 Phys. Rev. A 104 032807Google Scholar

    [30]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [31]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [32]

    Pearson R G 1975 Proc. Nat. Acad. Sci. USA 72 2104Google Scholar

    [33]

    Bersuker I B 2001 Chem. Rev. 101 1067Google Scholar

    [34]

    Bersuker I B 2021 Chem. Rev. 121 1463Google Scholar

    [35]

    Wörner H J, Merkt F 2009 Angew. Chem. Int. Ed. 48 6404Google Scholar

    [36]

    Jahn H A, Teller E 1937 Proc. R. Soc. London Ser. A 161 220Google Scholar

    [37]

    Matselyukh D, Svoboda V, Wörner H J 2025 Nat. Commun. 16 6540Google Scholar

    [38]

    Wang J G, Dong B W, Zhang M, Deng Y K, Jian X P, Li Z, Liu Y Q 2024 J. Am. Chem. Soc. 146 10443Google Scholar

    [39]

    Kugel' K I, Khomskiĭ D I 1982 Sov. Phys. Usp. 25 231Google Scholar

    [40]

    O’Brien M C, Chancey C C 1993 Am. J. Phys. 61 688Google Scholar

    [41]

    Zhou J Q, Wu L, Belina M, Skitnevskaya A D, Jia S K, Xue X R, Hao X T, Zeng Q R, Ma Q B, Zhao Y T, Li X K, He L H, Luo S Z, Zhang D D, Wang C C, Trofimov A B, Slavíček P, Ding D J, Ren X G 2025 Nat. Commun. 16 5838Google Scholar

    [42]

    Zhao X N, Zhang X Y, Liu H, Ma P, Li X K, Wang C C, Luo S Z, Ding D J 2025 Phys. Rev. A 111 053106Google Scholar

    [43]

    Zhou J Q, Belina M, Jia S K, Xue X R, Hao X T, Ren X G, Slavíček P 2022 J. Phys. Chem. Lett. 13 10603Google Scholar

    [44]

    Yuan H, Gao Y, Yang B, Gu S F, Lin H, Guo D L, Liu J L, Zhang S F, Ma X W, Xu S Y 2024 Phys. Rev. Lett. 133 193002Google Scholar

    [45]

    Duflot D, Robbe J M, Flament J P 1995 J. Chem. Phys. 103 10571Google Scholar

    [46]

    Matsubara T 2023 J. Phys. Chem. A 127 4801Google Scholar

  • [1] 殷桂琴, 张蕾蕾, 脱升. 双频磁化容性耦合氩/甲烷等离子体放电特性. 物理学报, 2025, 74(14): 145201. doi: 10.7498/aps.74.20250244
    [2] 张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文. 二价乙烷分子离子三体碎裂的解离机制研究. 物理学报, 2025, 74(6): 063401. doi: 10.7498/aps.74.20250008
    [3] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [4] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究. 物理学报, 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [5] 曹树利, 李寿哲, 牛裕龙, 李容毅, 朱海龙. 常压下预混甲烷和空气微波等离子体放电燃烧的实验研究. 物理学报, 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [6] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟. 物理学报, 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [7] 吴永刚, 刘家兴, 刘红玲, 徐梅, 令狐荣锋. 三氯一氟甲烷分子在辐射场中的光谱性质与解离特性研究. 物理学报, 2019, 68(6): 063102. doi: 10.7498/aps.68.20182121
    [8] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [10] 申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅. 中能Ne4+离子诱导的羰基硫分子三体碎裂动力学分析. 物理学报, 2018, 67(4): 043401. doi: 10.7498/aps.67.20172163
    [11] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [12] 周磊, 李晓亚, 祝文军, 王加祥, 唐昌建. 激光辐照固体靶产生等离子体反冲研究. 物理学报, 2016, 65(8): 085201. doi: 10.7498/aps.65.085201
    [13] 林康, 宫晓春, 宋其迎, 季琴颖, 马俊杨, 张文斌, 陆培芬, 曾和平, 吴健. 双色圆偏振飞秒脉冲驱动CO分子不对称解离. 物理学报, 2016, 65(22): 224209. doi: 10.7498/aps.65.224209
    [14] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究. 物理学报, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [15] 朱小龙, 马新文, 李斌, 冯文天, 张少锋, 刘惠萍, 钱东斌, 张大成. 低能He2+-He碰撞体系转移电离机理的实验研究. 物理学报, 2010, 59(1): 620-624. doi: 10.7498/aps.59.620
    [16] 朱小龙, 马新文, 李斌, 刘惠萍, 陈兰芳, 张少锋, 冯文天, 沙杉, 钱东斌, 曹士娉, 张大成. 低能He2+-He反应中单电子俘获微分散射过程的实验研究. 物理学报, 2009, 58(3): 2077-2082. doi: 10.7498/aps.58.2077
    [17] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离. 物理学报, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [18] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究. 物理学报, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [19] 程珊华, 宁兆元, 黄峰. 等离子体增强反应蒸发沉积的氟掺杂氧化铟薄膜的性质. 物理学报, 2002, 51(3): 668-673. doi: 10.7498/aps.51.668
    [20] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱. 物理学报, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
计量
  • 文章访问数:  642
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-15
  • 修回日期:  2025-09-01
  • 上网日期:  2025-09-05
  • 刊出日期:  2025-11-05

/

返回文章
返回