-
最小能量(小波)框架在信号处理领域有着广泛的应用前景,但目前只能应用在连续信号上.为解决这一问题,给出了离散信号空间上的最小能量框架的定义,并证明了它所具备的一些优良性质.在实际应用中,针对通信领域中的受加性高斯白噪声污染的二进制矩形脉冲信号提出一个新的去噪算法,利用离散空间上一个最小能量框架对接收波形的抽样离散数列进行去噪工作,获得了较好的处理效果.仿真结果表明,如果利用该算法对接收波形进行去噪预处理,则接收机可以降低误码率,在信噪比4 dB 处获得了3.4 dB的性能增益.
-
关键词:
- 离散信号空间 /
- 最小能量(小波)框架 /
- 二进制矩形脉冲信号 /
- 去噪
The minimum-energy (wavelet) frame has an extensive application prospect in the field of signal processing, but now it can be applied only to continuous signals. In order to solve the problem, we define a minimum-energy frame in the discrete signal space, and then prove that it has some good properties. In the actual application, we propose a new de-noising algorithm which is special for the binary rectangular pulse signal polluted by the additive gaussian noise and obtain better processing effect by using a minimum-energy frame in the discrete signal space to denoise the sampled sequence of receiving waveform. The simulation results show that if a pre-processing link is used to denoise the receiving waveform through using the algorithm, the receiver can reduce the bit error rate and achieve a 3.4 dB performance gain at 4 dB signal-to-noise ratio.-
Keywords:
- discrete signal space /
- minimum-energy (wavelet) frame /
- binary rectangular pulse /
- de-noising
[1] Chen S G, Ji S Y, Liu W S, Song Z Y, Pang L J 2009 Acta Phy. Sin. 58 3041(in Chinese)[陈世国、吉世印、刘万松、宋泽运、庞礼军 2009 物理学报58 3041]
[2] Zhao W S, He Y G, 2009 Acta Phy. Sin. 58 0843(in Chinese)[赵文山、何怡刚 2009 物理学报58 843]
[3] Deng Y Q, Cao S Y, Yu J,Xu T, Wang Q Y, Zhang Z G 2009 Acta Phy. Sin. 58 7017(in Chinese)[邓玉强、曹世英、于 靖、徐 涛、王清月、张志刚 2009 物理学报58 7017]
[4] Liu B, Peng J X, 2008 Sci. China Ser. F 38 2273 (in Chinese)[刘斌彭、嘉 雄 2008 中国科学F辑 38 2273]
[5] Chui C K, He W 2000 Appl. Comp. Harm. Anal. 8 293
[6] Peng L Z, Wang H H 2003 Sci. China Ser. F 46 445
[7] Gao X P, Zhou S W 2005 Sci. China Ser. F 48 771
[8] Gao X P, Cao C H, 2009 Sci. China Ser. F 39 411 (in Chinese) [高协平、曹春红 2009 中国科学F辑39 441]
[9] Mallat S 2003 A Wavelet Tour of Signal Processing 2 (Beijing: Machinery Industry Press) P241 (in Chinese) [马拉特 2003信号处理的小波导引 2(北京:机械工业出版社)第241页]
[10] Shen L X, Manos Papadakis, Ioannis A 2006 IEEE Trans. Ima. Proc.15 1177
[11] D Donoho 1995 IEEE Trans.Inf.Theory 3 613
[12] Petukhov A 2003 Constr. Approx. 19 309
[13] Abdelnour A F, Selesnick I W 2005 IEEE Trans. Sig. Proc. 53 231
[14] Chui C K 1997 An Introduction To Wavelets (Xian: Jiaotong University Press) P189 (in Chinese) [崔锦泰著 小波分析导论(西安:交通大学出版社)第189页]
-
[1] Chen S G, Ji S Y, Liu W S, Song Z Y, Pang L J 2009 Acta Phy. Sin. 58 3041(in Chinese)[陈世国、吉世印、刘万松、宋泽运、庞礼军 2009 物理学报58 3041]
[2] Zhao W S, He Y G, 2009 Acta Phy. Sin. 58 0843(in Chinese)[赵文山、何怡刚 2009 物理学报58 843]
[3] Deng Y Q, Cao S Y, Yu J,Xu T, Wang Q Y, Zhang Z G 2009 Acta Phy. Sin. 58 7017(in Chinese)[邓玉强、曹世英、于 靖、徐 涛、王清月、张志刚 2009 物理学报58 7017]
[4] Liu B, Peng J X, 2008 Sci. China Ser. F 38 2273 (in Chinese)[刘斌彭、嘉 雄 2008 中国科学F辑 38 2273]
[5] Chui C K, He W 2000 Appl. Comp. Harm. Anal. 8 293
[6] Peng L Z, Wang H H 2003 Sci. China Ser. F 46 445
[7] Gao X P, Zhou S W 2005 Sci. China Ser. F 48 771
[8] Gao X P, Cao C H, 2009 Sci. China Ser. F 39 411 (in Chinese) [高协平、曹春红 2009 中国科学F辑39 441]
[9] Mallat S 2003 A Wavelet Tour of Signal Processing 2 (Beijing: Machinery Industry Press) P241 (in Chinese) [马拉特 2003信号处理的小波导引 2(北京:机械工业出版社)第241页]
[10] Shen L X, Manos Papadakis, Ioannis A 2006 IEEE Trans. Ima. Proc.15 1177
[11] D Donoho 1995 IEEE Trans.Inf.Theory 3 613
[12] Petukhov A 2003 Constr. Approx. 19 309
[13] Abdelnour A F, Selesnick I W 2005 IEEE Trans. Sig. Proc. 53 231
[14] Chui C K 1997 An Introduction To Wavelets (Xian: Jiaotong University Press) P189 (in Chinese) [崔锦泰著 小波分析导论(西安:交通大学出版社)第189页]
计量
- 文章访问数: 8542
- PDF下载量: 865
- 被引次数: 0