搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进变分法对原子激发态精确波函数的研究

熊庄 汪振新 Naoum C. Bacalis

引用本文:
Citation:

基于改进变分法对原子激发态精确波函数的研究

熊庄, 汪振新, Naoum C. Bacalis

Accuracy study for excited atoms (ions):A new variational method

Xiong Zhuang, Wang Zhen-Xin, Naoum C. Bacalis
PDF
导出引用
  • 传统的利用变分原理求解Schrdinger方程获得原子激发态波函数的方法是基于HUM理论(Hylleraas-Undheim and MacDonald theorem),在有限的N维Hilbert空间中,通过求解久期方程的高阶根获得激发态的近似波函数. 在我们前期的工作中已指出,由于HUM方法的几个内禀缺陷限制,它将导致在相同的函数空间中,由传统变分法得到的激发态波函数的质量远差于足够好的基态波函数. 进一步地,为了避免基于HUM方法的变分缺陷,本文提出了新的变分函数,并证明其试探激发态波函数在其本征态处具有局域极小值,因而可以通过变分极小无限制的逼近该本征态. 在此基础上,利用广义的Laguerre类型轨道(GLTO)在组态相互作用的框架下,分别编写了基于传统HUM理论和新变分函数的关于求解原子近似波函数的计算程序,并且利用该程序计算了氦原子(He)在1S(e),1P(o)态下相应的基态及激发态近似波函数及对应的能量值和径向平均值,并与已有文献中结果进行比较,计算结果显示了HUM理论的缺陷及新变分函数优越性,并就进一步提高激发态的精度指明了方向.
    For the computation of excited states, the traditional solutions of the Schredinger equation, using higher roots of a secular equation in a finite N-dimensional function space, by the Hylleraas-Undheim and MacDonald (HUM) theorem, we found that it has several restrictions which render it of lower quality, relative to the lowest root if the latter is good enough. In order to avoid the variational restrictions, based on HUM, we propose a new variational function and prove that the trial wave function has a local minimum in the eigenstates, which allows to approach eigenstates unlimitedly by variation. In this paper, under the configuration interaction (CI), we write a set of calculation programs by using generalized laguerre type orbitals (GLTO) to get the approximate wave function of different states, which is base on the HUM or the new variational function. By using the above program we get the approximate wave function for 1S (e), 1P (o) state of helium atoms (He) through the different theorems, the energy value and radial expectation value of related states. By comparing with the best results in the literature, the theoretical calculations show the HUM's defects and the new variational function's superiority, and we further give the direction of improving the accuracy of excited states.
    • 基金项目: 国家自然科学基金重大研究计划(批准号:91334205)和国家自然科学基金联合基金(批准号:11178008)资助的课题.
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91334205), and the Joint Funds of the National Natural Science Foundation of China (Grant No. 11178008).
    [1]

    Lee T D 2005 J. Stat. Phys. 121 1015

    [2]

    Friedberg R, Lee T D, Zhao W Q 2006 Chin. Phys. 15 1909

    [3]

    Bunge C F 2006 J. Chem. phys. 125 014107

    [4]

    Cioslowski J 1987 J. Chem. phys. 86 2105

    [5]

    Gou B C, Chen Z, Lin C D 1991 Phys. Rev. A 43 3260

    [6]

    Kallman T R, Palmer P 2007 Rev. Mod. Phys. 79 79

    [7]

    Eidelsberg M, Crifo-Magnant F, Zeippen C J 1981 Astron. Astrophys. Suppl. Ser. 43 455

    [8]

    Dalgarno A 1979 Adv. At. Mol. Phys. 15 37

    [9]

    Qing Bo, Cheng Cheng, Gao Xiang, Zhang Xiao Le, Li Jia Ming 2010 Acta Phys. Sin. 59 7 (in Chinese) [青波, 程诚, 高翔, 张小乐, 李家明 2010 物理学报 59 7]

    [10]

    Hylleraas E, Undheim B 1930 Z. Phys. 65 759

    [11]

    McDonald J K L 1933 Phys. Rev. 43 830

    [12]

    Pilar F L 1968 Elementary Quantum Chemistry (Dover: McGraw-Hill Companies) p240

    [13]

    Harald Friedrich 1990 Theoretical Atomic Physics (Berlin: Springer-Verlag) p45

    [14]

    Newton R G 1982 Scattering Theory of Waves and Particles (2nd Ed.) (New York, Berlin, Heidelberg: Spring-Verlag) p326

    [15]

    Bacalis N C, Xiong Z, Karaoulanisc D 2008 Journal of Computational Methods in Sciences and Engineering 8 277

    [16]

    Chen M K 1994 J. Phys. B: At. Mol. Opt. Phys. 27 865

    [17]

    Bacalis N C 2007 Computation in Modern Science and Engineering CP963 Vol.2 Part A pp6-9

    [18]

    Li Z M, Xiong Z, Dai L L 2010 Acta Phys. Sin. 59 11 (in Chinese) [李尊懋, 熊庄, 代丽丽 2010 物理学报 59 11]

    [19]

    Ma Y, Xiong Z, Wang Z X 2013 Chinese Journal of Computational Physics 30 2 (in Chinese) [马迎, 熊庄, 汪振新 2013 计算物理 30 2]

  • [1]

    Lee T D 2005 J. Stat. Phys. 121 1015

    [2]

    Friedberg R, Lee T D, Zhao W Q 2006 Chin. Phys. 15 1909

    [3]

    Bunge C F 2006 J. Chem. phys. 125 014107

    [4]

    Cioslowski J 1987 J. Chem. phys. 86 2105

    [5]

    Gou B C, Chen Z, Lin C D 1991 Phys. Rev. A 43 3260

    [6]

    Kallman T R, Palmer P 2007 Rev. Mod. Phys. 79 79

    [7]

    Eidelsberg M, Crifo-Magnant F, Zeippen C J 1981 Astron. Astrophys. Suppl. Ser. 43 455

    [8]

    Dalgarno A 1979 Adv. At. Mol. Phys. 15 37

    [9]

    Qing Bo, Cheng Cheng, Gao Xiang, Zhang Xiao Le, Li Jia Ming 2010 Acta Phys. Sin. 59 7 (in Chinese) [青波, 程诚, 高翔, 张小乐, 李家明 2010 物理学报 59 7]

    [10]

    Hylleraas E, Undheim B 1930 Z. Phys. 65 759

    [11]

    McDonald J K L 1933 Phys. Rev. 43 830

    [12]

    Pilar F L 1968 Elementary Quantum Chemistry (Dover: McGraw-Hill Companies) p240

    [13]

    Harald Friedrich 1990 Theoretical Atomic Physics (Berlin: Springer-Verlag) p45

    [14]

    Newton R G 1982 Scattering Theory of Waves and Particles (2nd Ed.) (New York, Berlin, Heidelberg: Spring-Verlag) p326

    [15]

    Bacalis N C, Xiong Z, Karaoulanisc D 2008 Journal of Computational Methods in Sciences and Engineering 8 277

    [16]

    Chen M K 1994 J. Phys. B: At. Mol. Opt. Phys. 27 865

    [17]

    Bacalis N C 2007 Computation in Modern Science and Engineering CP963 Vol.2 Part A pp6-9

    [18]

    Li Z M, Xiong Z, Dai L L 2010 Acta Phys. Sin. 59 11 (in Chinese) [李尊懋, 熊庄, 代丽丽 2010 物理学报 59 11]

    [19]

    Ma Y, Xiong Z, Wang Z X 2013 Chinese Journal of Computational Physics 30 2 (in Chinese) [马迎, 熊庄, 汪振新 2013 计算物理 30 2]

  • [1] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [2] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移. 物理学报, 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [3] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究. 物理学报, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [4] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究. 物理学报, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [5] 陈园园, 杨盼杰, 张玮芝, 阎晓娜. 光子晶体理论研究的新方法混合变分法. 物理学报, 2016, 65(12): 124206. doi: 10.7498/aps.65.124206
    [6] 丁光涛. 阻尼最速落径问题和约束与运动定理的联系. 物理学报, 2014, 63(7): 070201. doi: 10.7498/aps.63.070201
    [7] 赵文达, 赵建, 续志军. 基于结构张量的变分多源图像融合. 物理学报, 2013, 62(21): 214204. doi: 10.7498/aps.62.214204
    [8] 杨晓勇, 薛海斌, 梁九卿. 自旋相干态变换和自旋-玻色模型的基于变分法的基态解析解. 物理学报, 2013, 62(11): 114205. doi: 10.7498/aps.62.114205
    [9] 杨振军, 李少华, 陆大全, 胡巍. 非局域非线性克尔介质中两极孤子的变分解. 物理学报, 2010, 59(7): 4707-4714. doi: 10.7498/aps.59.4707
    [10] 李尊懋, 熊庄, 代丽丽. 几何活性原子态的计算. 物理学报, 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [11] 戴继慧, 郭旗. 强非局域非线性介质中的旋转涡旋光孤子. 物理学报, 2009, 58(3): 1752-1757. doi: 10.7498/aps.58.1752
    [12] 袁卫国, 戴长建, 靳 嵩, 赵洪英, 关 锋. Ba原子6pnd(J=1, 3)自电离光谱的实验研究. 物理学报, 2008, 57(7): 4076-4082. doi: 10.7498/aps.57.4076
    [13] 戴继慧, 郭 旗. 非局域非线性介质中光束传输的拉盖尔-高斯变分解. 物理学报, 2008, 57(8): 5001-5006. doi: 10.7498/aps.57.5001
    [14] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正. 物理学报, 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [15] 白东峰, 郭 旗, 胡 巍. 非局域克尔介质中厄米高斯光束传输的变分研究. 物理学报, 2008, 57(9): 5684-5689. doi: 10.7498/aps.57.5684
    [16] 万建杰, 颉录有, 董晨钟, 蒋 军, 颜 君. 类镍等电子系列离子M1,M2,E2禁戒跃迁特性的理论研究. 物理学报, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [17] 童 治, 魏 淮, 简水生. 分布式光纤拉曼放大器在长距离光传输系统中的优化设计. 物理学报, 2006, 55(4): 1873-1882. doi: 10.7498/aps.55.1873
    [18] 罗来龙. 碳纤维混凝土中的隧道电流. 物理学报, 2005, 54(6): 2540-2544. doi: 10.7498/aps.54.2540
    [19] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 物理学报, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [20] 齐静波, 陈重阳, 王炎森. 类钠离子的电子碰撞电离截面. 物理学报, 2001, 50(8): 1475-1480. doi: 10.7498/aps.50.1475
计量
  • 文章访问数:  3528
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-01
  • 修回日期:  2013-11-22
  • 刊出日期:  2014-03-05

基于改进变分法对原子激发态精确波函数的研究

  • 1. 东南大学空间科学与技术研究院, 南京 210096;
  • 2. 东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096;
  • 3. Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vasileos Constantinou 48, GR-116 35 Athens, Greece
    基金项目: 国家自然科学基金重大研究计划(批准号:91334205)和国家自然科学基金联合基金(批准号:11178008)资助的课题.

摘要: 传统的利用变分原理求解Schrdinger方程获得原子激发态波函数的方法是基于HUM理论(Hylleraas-Undheim and MacDonald theorem),在有限的N维Hilbert空间中,通过求解久期方程的高阶根获得激发态的近似波函数. 在我们前期的工作中已指出,由于HUM方法的几个内禀缺陷限制,它将导致在相同的函数空间中,由传统变分法得到的激发态波函数的质量远差于足够好的基态波函数. 进一步地,为了避免基于HUM方法的变分缺陷,本文提出了新的变分函数,并证明其试探激发态波函数在其本征态处具有局域极小值,因而可以通过变分极小无限制的逼近该本征态. 在此基础上,利用广义的Laguerre类型轨道(GLTO)在组态相互作用的框架下,分别编写了基于传统HUM理论和新变分函数的关于求解原子近似波函数的计算程序,并且利用该程序计算了氦原子(He)在1S(e),1P(o)态下相应的基态及激发态近似波函数及对应的能量值和径向平均值,并与已有文献中结果进行比较,计算结果显示了HUM理论的缺陷及新变分函数优越性,并就进一步提高激发态的精度指明了方向.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回