-
We develop a computer code to calculate ab-initio variational configuration interaction of electronic structure of atoms via generalised Lagurre type orbitals. Treating the orbital effective charges as variational parameters and computing the absolute minimum of energy, yield its optimal wave function.Then utilizing the one-electron density and the probability distribution of the angular two-electron density according to the optimal wave function, we investigate the geometrically active atomic states (GAASs) of Be, B, C, N, O and Ne atoms that are in the first excited states with configurations sαpβ. These results reveal that as an intrinsic property of the wave function of atoms, the angle of the most probabl angular distribution of two-electron density is approximately equal to the bond angle of the molecule, which usually can be explained by the hybridization theory.
-
Keywords:
- geometrically active atomic state /
- hybridization /
- configuration interaction /
- molecular shape
[1] Huang C H, Li J 1999 Acta Phys. Sin. 48 636(in Chinese)[黄春晖、李 俊 1999 物理学报 48 636]
[2] Reed A E, Curtiss L A, Weinhold F 1988 Chem .Rev. 88 899
[3] Nicolaides C A, Komninos Y 1998 Int. J. Quantum Chem. 67 321
[4] Komninos Y, Nicolaides C A 1999 Int. J .Quantum Chem . 71 25
[5] Koga T, Matsuyama H 2004 J. Chem. Phys. 121 2016
[6] Xiong Z, Velgakis M I, Bacalis N C 2005 Int . J. Quantum Chem. 104 418
[7] Xiong Z, Bacalis N C 2006 Chin. Phys. 15 992
[8] Fischer F C, Brage T, Jonsson P 1997 Computational Atomic Structure An MCHF Approach(Bristol: Institute of Physics Publishing) p92
[9] McWeeny R 1989 Methods of Molecular Quantum Mechanics 2nd ed. (San Diego: Academic) p64
[10] Schaefer H F, Harris F E 1968 J. Comput. Phys. 3 217
[11] Press W H, Teukolsky S A, Vetterling W T,Flannery B P 1992 Numeric Recipes in FORTRAN, 2nd ed. (London: Cambridge University Press) p455
[12] McWeeny R 1989 Methods of Molecular Quantum Mechanics 2nd ed. (San Diego: Academic) p66
[13] Archbold J W 1961 Algebra (London: Pitman Publishing) p338
[14] Tinkham M 1964 Group Theory and Quantum Mechanics (NewYork:McGraw-Hill Book Company) P175
[15] Zeng J Y 1998 Introduction to Quantum Mechanics (Being: Peking University Press) p258 (in Chinese)[曾谨言 1998 量子力学导论 (北京: 北京大学出版社) 第258页]
[16] Huang D H, Wang F H 2009 Acta Phys. Sin. 58 6094 (in Chinese)[黄多辉、王藩侯 2009 物理学报 58 6094]
[17] Xiong Z, Bacalis N C 2010 Chin. Phys.B 19 023601
-
[1] Huang C H, Li J 1999 Acta Phys. Sin. 48 636(in Chinese)[黄春晖、李 俊 1999 物理学报 48 636]
[2] Reed A E, Curtiss L A, Weinhold F 1988 Chem .Rev. 88 899
[3] Nicolaides C A, Komninos Y 1998 Int. J. Quantum Chem. 67 321
[4] Komninos Y, Nicolaides C A 1999 Int. J .Quantum Chem . 71 25
[5] Koga T, Matsuyama H 2004 J. Chem. Phys. 121 2016
[6] Xiong Z, Velgakis M I, Bacalis N C 2005 Int . J. Quantum Chem. 104 418
[7] Xiong Z, Bacalis N C 2006 Chin. Phys. 15 992
[8] Fischer F C, Brage T, Jonsson P 1997 Computational Atomic Structure An MCHF Approach(Bristol: Institute of Physics Publishing) p92
[9] McWeeny R 1989 Methods of Molecular Quantum Mechanics 2nd ed. (San Diego: Academic) p64
[10] Schaefer H F, Harris F E 1968 J. Comput. Phys. 3 217
[11] Press W H, Teukolsky S A, Vetterling W T,Flannery B P 1992 Numeric Recipes in FORTRAN, 2nd ed. (London: Cambridge University Press) p455
[12] McWeeny R 1989 Methods of Molecular Quantum Mechanics 2nd ed. (San Diego: Academic) p66
[13] Archbold J W 1961 Algebra (London: Pitman Publishing) p338
[14] Tinkham M 1964 Group Theory and Quantum Mechanics (NewYork:McGraw-Hill Book Company) P175
[15] Zeng J Y 1998 Introduction to Quantum Mechanics (Being: Peking University Press) p258 (in Chinese)[曾谨言 1998 量子力学导论 (北京: 北京大学出版社) 第258页]
[16] Huang D H, Wang F H 2009 Acta Phys. Sin. 58 6094 (in Chinese)[黄多辉、王藩侯 2009 物理学报 58 6094]
[17] Xiong Z, Bacalis N C 2010 Chin. Phys.B 19 023601
计量
- 文章访问数: 8106
- PDF下载量: 640
- 被引次数: 0