-
The electronic structure of the X2Σ+, A2Π, B2Σ+, 32Σ+, and 22Π state of LiCl– anion are performed at an MRCI+Q level. Davison correction, core-valence correction and spin-orbit coupling effect are also considered. The ground state X2Σ+ of LiCl– anion correlates with the lowest dissociation channel Li(2Sg) + Cl–(1Sg); the A2∏ state and B2Σ+ state correlate with the second dissociation channel Li(2Pu) + Cl–(1Sg); the 32Σ+ state and 22Π state correlate with the third dissociation channel Li–(1Sg) + Cl–(2Pu). Spectroscopic parameters are calculated by solving the radial Schröedinger equation. The equilibrium internuclear distance Re of the ground state X2Σ+ is 2.1352 Å, which is a little bigger than the experimental datum, with an error being 0.5%. It is a deep potential well, and the dissociation energy De is 1.886 eV. These values are in good agreement with experimental data. The A2∏ state is at 13431.93 cm–1 above the X2Σ+ state. The Re is 2.1198 Å, which is only 0.0154 Å smaller than that of the X2Σ+ state. The values of energy level Gν and rotational constant Bν of five Λ-S states are also calculated. The values are in good agreement with available theoretical ones. The electronic structures of the excited states are also reported. The SOC effect weakly influences the spectroscopic parameters for the X2Σ+1/2 ,A2Π1/2 ,A2Π3/2 , andB2Σ+1/2 state. From the analysis of the SO matrix, it can be seen that the SOC effect plays a little role in realizing the A2Π↔ X2Σ+ transition, so, it can be ignored.The scheme of laser cooling of LiCl– anion has constructed at a spin – free level. The A2∏(ν′) ↔ X2Σ+(v″ ) transition has a highly diagonally distributed Franck-Condon factor f00 = 0.9898, the calculated branching ratio of the diagonal term R00 is 0.9893, and spontaneous radiative lifetime of A2∏ is 35.45 ns. A main pump laser and two repumping lasers for driving the A2∏(ν′)↔ X2Σ+(v″ ) transitions are required. The laser wavelengths are 744.10, 774.30 and 772.42 nm, respectively. Owing to the summation of R00, R01, and R02 being closer to 1, the A2∏(ν′)↔ X2Σ+(v″ ) transition is a quasicycling transition. These results imply that the LiCl– anion is a candidate for laser cooling.1. 引 言
超冷分子在量子计算[1]、化学动力学[2]和控制化学[3]等领域有着广泛的应用. 由于分子内部能级结构复杂, 激光冷却分子存在巨大的挑战. Shuman等[4]于2010年首次在实验上实现了分子的激光冷却. 随后Zhelyazkova 等[5]于2014年实现了YO分子的激光冷却, 他们构造了一个闭合的三电子能级系统. 至今为止, 有很多关于激光冷却氯化物和锂化物的理论研究, 如LiBe[6], BeCl[7], MgCl[8,9], CaCl[10], AlCl[11]和TlCl[12]分子.
2015年, Yzombard等[13]首次从理论上预测了
C−2 双原子分子阴离子是适合激光冷却的候选体系. 杨传路等[14,15]也分别讨论了激光冷却NH–和BH–阴离子的可能性. 对两种阴离子而言, 他们分别构造了11∏↔ X1Σ+和12Σ+↔ 12∏准闭合的能级系统. 近几年来, 我们讨论了激光冷却OH– [16], SH– [17], KCl– [18]和SeH– [19]阴离子的可能性. LiCl–与KCl–阴离子的结构相似. 以往的文献中很少有LiCl–阴离子和LiCl分子关于势能性质方面的研究[20-23]. 1976年, 实验上第一次报道LiCl–阴离子的光谱[20], 并得到了其基态的平衡核间距. 1986年, Miller等[21]报道了LiCl–的光电子谱, 分辨率为80 cm–1 (0.01 eV). 实验得到了其基态的平衡核间距, 离解能等光谱常数, 同时得到了LiCl分子电子亲合能为(0.593 ± 0.01) eV. 1976年, Jordan和Luken[22]采用Hartree-Fock (HF)方法计算得到了LiCl–阴离子基态X2Σ+的势能曲线, 他们得到基态的平衡核间距略大于2.12 Å. 近年来, 李松等[23]采用耦合簇方法计算了其基态的光谱常数和分子常数. 2004年, Weck等[24]采用多参考单双激发组态相互作用 (MRSDCI) 方法计算得到了LiCl分子X1Σ+和B1Σ+的势能曲线. 两个电子态的势能曲线在8 Å 左右发生避免交叉现象. 2012年, Kurosaki和Yokoyama[25]采用MRSDCI方法计算得到了LiCl分子7个Λ-S态和13个Ω态的势能曲线, 并拟合得到其基态的光谱常数.从以往的研究中可以发现, 只有极少数文献研究了LiCl–阴离子基态的光谱性质. 本文将采用高精度的从头算方法计算LiCl–阴离子5个较低的Λ-S态和7个Ω态的电子结构, 得到每个束缚态的光谱常数和分子常数. 同时预测A2∏
↔ X2Σ+跃迁的弗兰克-康登因子, 爱因斯坦系数和自发辐射寿命. 最后讨论通过构造A2∏↔ X2Σ+准循环跃迁能级进行激光冷却LiCl–阴离子的可能性.2. 计算细节
基于MOLPRO 2010程序包[26]计算了LiCl–阴离子最低的3个离解通道所对应的5个电子态 (X2Σ+, A2∏, B2Σ+, 32Σ+, 22∏) 的势能曲线. 首先采用限制性的Hartree-Fock (HF) 方法得到LiCl–阴离子的初始能量; 然后通过完全活动空间自洽场方法 (CASSCF)[27,28] 产生多参考波函数; 最后采用多参考组态相互作用方法 (MRCI)[29,30] 得到所计算Λ-S态的能量, 考虑Davidson修正 (+Q) 减小计算误差. 在MRCI+Q水平下通过Breit-Pauli哈密顿量[31]来考虑自旋-轨道耦合效应 (SOC).
由于程序的限制, 必须把C∞V点群约化为C2V子群来计算LiCl–阴离子的电子结构. C2V群有4个不可约表示 (a1, b1, b2, a2). 在CASSCF计算中, 选择了8个分子轨道 (4, 2, 2, 0) 作为活动空间, 包含了Li 2s2p和Cl的3s3p壳层, 可以写为CAS(9, 8). Li 1s和Cl 2s2p选作闭壳层, 保持双占据. 其他的电子被冻结, 不参与能量的计算. 在MRCI+Q计算中, Li 1s和Cl 2s2p用于考虑芯-价电子 (CV) 关联效应, 有17个电子参与了相关能的计算. 和K原子一样[32], Li原子采用了def2-AQZVPP-JKFI全电子基组[33], Cl原子采用了AWCVQZ-DK全电子基组[34].
采用LEVVEL8.0程序[35]求解径向薛定谔方程得到每个束缚态的平衡核间距 (Re), 离解能 (De), 谐振频率 (ωe), 非谐振频率 (ωeχe), 转动常数 (Be)和垂直跃迁能 (Te). 同时计算出弗兰克-康登因子, 爱因斯坦系数Aν′ν″(s–1) 和自发辐射寿命. 爱因斯坦系数可以表示为
Aν′ν″=7.2356×10−62−δ0,Λ′Λ″2−δ0,Λ′×ΔE3ν′ν″|⟨Ψν′|D(r)|Ψν″⟩|2. (1) Λ′和Λ″分别表示高态和低态的电子角动量投影量子数, (2 – δ0,Λ′Λ″)/(2 – δ0, Λ′)表示简并因子, ΔEν′ν″表示振动能级之间的能量差, D(r)表示跃迁偶极矩, ψν′和ψν″分别表示高态和低态的振动波函数.
3. 结果与讨论
3.1 Λ-S态的势能曲线和光谱常数
在MRCI+Q水平下计算得到了LiCl–阴离子X2Σ+, A2∏, B2Σ+, 32Σ+和22∏态的势能曲线. 图1描绘了5个电子态的势能曲线. 可以看到5个电子态都是束缚态. Li和Cl原子的电子亲合能的实验值分别4984.86 cm–1 [36]和29138.35 cm–1[37]. 可以得到基态X2Σ+对应最低的离解极限Li(2Sg) + Cl–(1Sg), A2∏和B2Σ+电子态对应第二离解极限Li(2Pu) + Cl–(1Sg), 而32Σ+和22∏电子态对应第三离解极限Li–(1Sg)+Cl(2Pu). Λ-S态之间的离解关系以及离解极限之间的能量差列于表1中. 从表1可以看出, 本文的计算的结果和已有实验值符合较好. 同时本文计算了LiCl分子的电子亲合能为0.4392 eV, 比Miller等[21]的实验值小0.153 eV.
LiCl–阴离子5个束缚态的光谱常数列在表2中. 基态X2Σ+的平衡核间距为2.1352 Å, 比最新实验值[21]大0.0112 Å, 误差仅为0.5%, 与最新理论值[23]相差仅0.0002 Å. 相比与同主簇的KCl–阴离子, 其基态的平衡核间距比KCl–阴离子约小25%[18]. 本文计算的谐振频率也仅比最新理论值小2.37 cm–1. 基态在平衡核间距处的主要电子组态为1σ22σ23σ24σ21π45σ26σ22π47σ18σ03π0, 权重为74.9%, 其另外一个重要电子组态为1σ22σ23σ24σ21π45σ26σ22π47σ08σ13π0, 权重为17.2%. 基态有一个很深的势阱, 其势阱深度达到了1.8556 eV. 从表1可以看出, 本文计算的基态的光谱常数与已有实验值和理论值符合很好. 第一激发态A2∏到基态的垂直跃迁能为13431.93 cm–1. 其平衡核间距为2.1198 Å, 比基态的平衡核间距小0.0154 Å. 其在平衡核间距处的主要电子组态为1σ22σ23σ24σ21π45σ26σ22π47σ08σ03π1, 权重为92.03%, A2∏
↔ X2Σ+ 跃迁源自7σ↔ 3π跃迁. B2Σ+, 32Σ+和22∏态在平衡核间距处的主要电子组态分别为1σ22σ23σ24σ21π45σ26σ22π47σ08σ13π0, 1σ22σ23σ24σ21π45σ26σ12π47σ28σ03π0和 1σ22σ23σ24σ21π45σ26σ22π37σ28σ03π0, 权重分别为74.5%, 80.16%和80.16%, 可以看出B2Σ+ → X2Σ+, 32Σ+ → X2Σ+和22∏ → X2Σ+ 跃迁分别来源于 7σ → 8σ, 6σ → 7σ和 3π → 7σ跃迁. 32Σ+和22∏态为弱束缚态, 其谐振频率分别为30.19 cm–1和39.08 cm–1. 其离解能仅为0.00353 eV和0.0112 eV. 从图1中可以, 看出两个态的势能曲线在约3.94 Å出现交叉.表 2 LiCl–阴离子Λ-S态的光谱常数Table 2. Spectroscopic parameters of the Λ-S states of LiCl– anion.电子态 Re/Å ωe/cm–1 ωeχe/cm–1 Be/cm–1 De/eV D0/eV Te/cm–1 X2Σ+ 2.1352 535.33 5.8173 0.7205 1.8886 1.856 0 实验值[20] 2.18(4) 0 实验值[21] 2.123(15) 1.75(2) 0 理论值[22] 2.12a 0 理论值[23] 2.1354 537.7b 6.34b 0.7203b 1.81 0 A2∏ 2.1198 554.65 5.7157 0.7310 1.9902 1.9559 13431.93 B2Σ+ 2.0282 652.79 6.1252 0.7985 1.6653 1.6250 17491.75 32Σ+ 5.8594 30.19 0.8483 0.0963 0.0362 0.0353 38607.64 22∏ 7.1411 39.08 0.5616 0.0638 0.0136 0.0112 38855.32 a采用HF方法计算得到基态的核间距. 3.2 振动能级和分子常数
基于精确的势能曲线, 得到了J = 0时5个Λ-S态 (X2Σ+, A2∏, B2Σ+, 32Σ+和22∏) 的振动态, 5个态分别有65, 90, 31, 30和31个振动态, 限于篇幅, 表3中分别只列出了每个态前10个振动态的振动能级Gν和转动常数Bν. 2015年, 李松等[23]计算得到了6Li35Cl–阴离子基态的分子常数[23]. 本文中G0(X2Σ+)的计算结果和已有理论值的误差为1%, 基态的其他结果与理论值[23]的误差均小于0.4%. 可见本文的计算结果是可靠的.
表 3 X2Σ+, A2∏, B2Σ+, 32Σ+和22∏态的振动能级和转动常数Table 3. Vibrational energy levels, rotational constants of the X2Σ+, A2∏, B2Σ+, 32Σ+ and 22∏ states.ν X2Σ+ A2∏ B2Σ+ 32Σ+ 22∏ Gν Bν Gν Bν Gν Bν Gν Bν Gν Bν 本文工作 文献[23] 本文工作 文献[23] 本文工作 本文工作 本文工作 本文工作 本文工作 本文工作 本文工作 本文工作 0 266.72 264.07 0.7146 0.7143 276.48 0.7252 325.33 0.7927 14.96 0.0940 6.12 0.0631 1 790.93 791.77 0.7029 0.7023 820.21 0.7136 966.07 0.7811 43.02 0.0893 18.15 0.0618 2 1303.27 1307.01 0.6911 0.6903 1352.13 0.7021 1594.23 0.7697 68.84 0.0857 28.92 0.0572 3 1803.71 1809.92 0.6794 0.6784 1872.34 0.6907 2210.02 0.7584 93.22 0.0826 29.30 0.0095 4 2292.31 2300.65 0.6677 0.6666 2380.97 0.6793 2813.56 0.7471 116.24 0.0796 31.32 0.0112 5 2769.15 2779.34 0.6560 0.6548 2878.13 0.6680 3404.89 0.7359 138.17 0.0765 33.19 0.0125 6 3234.29 3246.11 0.6444 0.6430 3363.87 0.6567 3984.09 0.7247 158.98 0.0725 35.07 0.0140 7 3687.83 3701.10 0.6328 0.6313 3838.29 0.6455 4551.20 0.7135 178.26 0.0678 36.53 0.0310 8 4129.88 4144.45 0.6212 0.6197 4301.42 0.6343 5106.17 0.7023 195.60 0.0626 37.33 0.0257 9 4560.61 4576.29 0.6097 0.6081 4753.37 0.6231 5648.95 0.6911 210.77 0.0571 39.11 0.0188 3.3 Ω态的势能曲线和光谱常数
考虑SOC效应后, Li和Cl原子的2P原子态分裂为2P1/2和2P3/2. 5个Λ-S态分裂为7个Ω态, 包含了5个1/2和2和3/2态, 分别对应5个最低的离解极限, Ω态之间的离解关系以及离解极限之间的能量差列于表4中. Li (2P1/2) + Cl– (1S0), Li (2P3/2) + Cl– (1S0), Li– (1S0) + Cl (2P3/2)和Li– (1S0) +Cl(2P1/2)与最低离解极限Li–(1S0)+Cl(2P1/2) 之间的能量差分别为14252.77 cm–1, 14253.50 cm–1, 23415.41 cm–1 和24288.48 cm–1, 与实验值符合[36-38]的误差分别为4.37%, 4.36%, 3.06%和2.99%. 计算得到Li (2P)和Cl (2P)的分裂值分别为0.26 cm–1和873.07 cm–1, 仅比实验值[38]小0.075 cm–1和9.28 cm–1. 从表4 可以看出本文的计算结果与实验值符合较好.
表 4 LiCl–阴离子Ω态的离解关系Table 4. Calculated dissociation relationships of the Ω states of LiCl– anion.X2Σ+1/2,A2Π1/2,A2Π3/2,B2Σ+1/2,32Σ+1/2,22Π3/2 和22Π1/2 态的势能曲线绘制在图2中, 可以看出A2Π1/2 和A2Π3/2 态的曲线基本重合. Ω态的光谱常数也列于表5中. 对比表2中没有考虑SOC的Λ-S态的光谱常数可以看出, SOC效应对X2Σ+, A2∏和B2Σ+态的光谱常数几乎没有影响, Ω态和Λ-S态的光谱常数最大误差不超过1%. A2∏态的分裂不明显, 计算得到其分裂常数仅为24.3 cm–1, 而22∏态的分裂非常明显, 其分裂常数达到了804 cm–1.表 5 LiCl–阴离子Ω态的光谱常数Table 5. Spectroscopic parameters of the Ω states of LiCl– anion at icMRCI+Q level.Ω态 Re/Å ωe/cm–1 ωeχe /cm–1 Be/cm–1 De/eV Te/cm–1 X2Σ+1/2 2.1352 535.32 5.8172 0.7205 1.8886 0 A2Π1/2 2.1196 554.87 5.7153 0.7311 2.0094 13419.77 A2Π3/2 2.1200 554.41 5.7160 0.7308 2.0059 13444.07 B2Σ+1/2 2.0282 652.79 6.1253 0.7985 1.6679 17491.75 本文计算了电子态之间的SO矩阵元, 通过其大小来判断SOC相互作用的强弱, 表6中列出了所计算电子态之间可能的16个SO矩阵元, 其中
⟨A|ˆHBPSO|B⟩ 表示A和B态之间的SO矩阵元. SO矩阵元随核间距变化的曲线绘制在图3中. SO1和SO2表示X2Σ+和A2∏的两个分量之间的SO矩阵元, 故两者大小相等, 同样SO3 = SO4, SO5 = SO6, SO7 = SO8, SO9 = SO10, SO11 = SO12, SO14 = SO15. 图3中可以看到, 22∏的两个分量之间以及22∏与32Σ+之间的矩阵元达到了近300 cm–1, SOC效应对22∏态的影响较大, 而其他的SO矩阵元非常小, 说明SOC效应对X2Σ+, A2∏, B2Σ+电子态的影响很小, 基本可以忽略. 因此本文在自旋无关水平下研究了LiCl–阴离子的跃迁性质及激光冷却的可能性.表 6 LiCl–阴离子的自旋-轨道矩阵元Table 6. Notation of spin-orbit matrix element.SO矩阵元 SO1=−i⟨X2Σ+|ˆHBPSO|A2Πy⟩ SO2=⟨X2Σ+|ˆHBPSO|A2Πx⟩ SO3=−i⟨B2Σ+|ˆHBPSO|A2Πy⟩ SO4=⟨B2Σ+|ˆHBPSO|A2Πx⟩ SO5=−i⟨32Σ+|ˆHBPSO|A2Πy⟩ SO6=⟨32Σ+|ˆHBPSO|A2Πx⟩ SO7=−i⟨X2Σ+|ˆHBPSO|22Πy⟩ SO8=⟨X2Σ+|ˆHBPSO|22Πx⟩ SO9=−i⟨B2Σ+|ˆHBPSO|22Πy⟩ SO10=⟨B2Σ+|ˆHBPSO|22Πx⟩ SO11=−i⟨32Σ+|ˆHBPSO|22Πy⟩ SO12=⟨32Σ+|ˆHBPSO|22Πx⟩ SO13=i⟨A2Πx|ˆHBPSO|A2Πy⟩ SO14=i⟨22Πx|ˆHBPSO|A2Πy⟩ SO15=i⟨22Πy|ˆHBPSO|A2Πx⟩ SO16=i⟨22Πx|ˆHBPSO|22Πy⟩ 3.4 偶极矩, 跃迁偶极矩, 弗朗克-康登因子, 爱因斯坦系数
X2Σ+, A2∏, B2Σ+, 32Σ+和22∏态的电偶极矩以及激发态到基态跃迁的跃迁偶极矩随核间距变化的曲线分别描绘于图4(a)和图4(b)中. 基态X2Σ+平衡核间距处的电偶极矩达到了2.268 a.u, 比SrF分子 (1.378 a.u) 和KCl–阴离子 (1.212 a.u) 要大很多, 所以其极性很强. 也说明激光冷却LiCl–阴离子能满足电偶极矩较大的条件. 由于其是一个强极性的分子离子, 故其电子态的电偶极矩在无穷远处不为零, 从图4(a)中可以看出, 当核间距大于4 Å时, 电偶极矩随核间距的增加基本成线性增大的关系. 由于X2Σ+, A2∏和B2Σ+态来源于Li + Cl–, 故三个态的电偶极矩有同样的变化趋势, 32Σ+和22∏态来源于Li –+ Cl, 故这两个态的电偶极矩趋近于另一极限.
由于A2∏和B2Σ+态具有同样的离解极限, A2∏
↔ X2Σ+和B2Σ+↔ X2Σ+跃迁在核间距无穷远处源自于Li原子2Sg到2Pu的跃迁. 它们的跃迁偶极矩随着核间距的增大趋于同一值2.561 a.u. 在平衡核间距处, A2∏↔ X2Σ+和B2Σ+↔ X2Σ+跃迁有很大的跃迁偶极矩, 分别达到了2.393 a.u和1.712 a.u, 22∏↔ X2Σ+和32Σ+↔ X2Σ+跃迁比A2∏↔ X2Σ+和B2Σ+↔ X2Σ+跃迁的跃迁强度弱很多.本文计算了A2∏
↔ X2Σ+和B2Σ+↔ X2Σ+跃迁的弗兰克-康登因子fν'ν'', 爱因斯坦系数和自发辐射寿命, 计算结果见表7. A2∏↔ X2Σ+跃迁具有高对角分布的弗朗克-康登因子, 而B2Σ+↔ X2Σ+跃迁对角分布的弗朗克-康登因子比较小. 两种跃迁都有较大的爱因斯坦系数, 当ν' = 0时, 两种跃迁总的爱因斯坦系数分别为2.821 × 107 s–1和2.858 × 107 s–1, A2∏和B2Σ+态的自发辐射寿命分别为35.45 ns和34.99 ns. 当ν' = 1时, 两种跃迁总的爱因斯坦系数分别为2.823 × 107 s–1和3.03 × 107 s–1, 自发辐射寿命分别为35.43 ns和33.0 ns.表 7 A2∏ X2Σ+和B2Σ+↔ X2Σ+跃迁的弗兰克-康登因子fν'ν'', 爱因斯坦系数Aν'ν''和自发辐射寿命 (单位: ns)↔ Table 7. Franck-Condon Factors fν'ν'', Einstein coefficients Aν'ν'', and radiative lifetimes τ of the A2∏ X2Σ+ and B2Σ+↔ X2Σ+ transitions of LiCl– anion(in ns).↔ 跃迁 f00 f01 f02 f03 A00 A01 A02 A03 τ = 1/ΣA f10 f11 f12 f13 A10 A11 A12 A13 A2∏ ↔ X2Σ+ 0.9898 0.0101 0.0001 8.70(–7) 27904200 298313 3848.85 44.60 35.45 0.0102 0.9686 0.0209 0.0004 269660 27336600 607335 12332 35.43 B2Σ+ ↔ X2Σ+ 0.5908 0.2909 0.0894 0.0225 18316800 7658290 2038730 452210 34.99 0.3266 0.1286 0.2888 0.1671 12279600 4261780 7988480 3979390 33.00 3.5 激光冷却LiCl–阴离子的可行性
X2Σ+, A2∏和B2Σ+的势能曲线没有交叉和避免交叉, SOC效应对着3个态的势能曲线和跃迁性质的影响也不明显, 本文将在自旋无关水平下讨论激光冷却LiCl–阴离子的可能性.
A2∏
↔ X2Σ+跃迁的弗朗克-康登因子f00 = 0.9898, 比SrF分子和CaH分子的f00略大 [f00(SrF) = 0.98[4], f00(CaH) = 0.985[39]], 也比同主簇KCl–阴离子的f00大很多 (f00 = 0.8816)[18], 说明激光冷却LiCl–阴离子具有足够大的f00. 另一方面, A2∏态的自发辐射寿命只有35.45 ns, 足以快速的激光冷却LiCl–阴离子.振动分支比Rν'ν''比fν'ν''能更加准确的描述循环过程中的光子损失. 振动分支比Rν'ν''可以表示为
Rv′v″=Av′v″∑v″Av′v″. (2) A2∏
↔ X2Σ+跃迁的对角项分支比R00和R11分别为0.9893和0.9685, 非对角项分支比分别为: R01 = 0.0106, R02 = 1.36 × 10–4, R03 = 1.58 × 10–6, R10 = 0.0096, R12 = 0.0215, R13 = 4.37 × 10–4, 可以得到R00, R01和R02的和非常接近1, 说明A2∏(ν′)↔ X2Σ+(v″ )跃迁是一个准循环跃迁能级系统. 其冷却途径见图5. 红线表示泵浦激光其中主激光波长λ00为744.10 nm, 为了提高冷却效率, 增加了两束抽运激光, 其波长分别为λ10 = 774.30 nm和λ21 = 772.42 nm. 激光冷却LiCl–阴离子所需激光波长要小于冷却KCl–阴离子所需波长[18]. 蓝线表示从A2∏自发辐射到基态的振动分支比. R03+的表示ν″ ≥ 3的所有分支比之和, 计算得到R03+ < 1.60 × 10–6, 则理论上至少能散射6 × 105个光子. 故可以构造A2∏(ν')↔ X2Σ+(v″ )准闭合能级系统进行激光冷却LiCl–阴离子.虽然B2Σ+态的自发辐射寿命足够小, 但由于B2Σ+
↔ X2Σ+跃迁的弗兰克-康登因子太小, f00 = 0.5908, 故没有考虑构建B2Σ+↔ X2Σ+跃迁进行激光冷却LiCl–阴离子.4. 结 论
本文采用MRCI+Q方法计算了LiCl–阴离子X2Σ+, A2Π, B2Σ+, 32Σ+和22Π 电子态的势能曲线, 电偶极矩和跃迁偶极矩. 计算过程中考虑了CV关联和SOC效应. 计算结果表明5个Λ-S态和7个Ω态都是束缚态. 通过求解径向薛定谔方程得到束缚态的光谱常数和分子常数. 基态的光谱常数与分子常数与已有实验值和理论值符合较好. 得到了A2∏
↔ X2Σ+和B2Σ+↔ X2Σ+跃迁的弗兰克-康登因子, 爱因斯坦系数和自发辐射寿命. 本文报道了LiCl–阴离子激发态的光谱常数, 分子常数和跃迁性质. 通过分析SO矩阵可以得到SOC效应对X2Σ+, B2Σ+, A2∏的光谱常数和A2∏↔ X2Σ+和B2Σ+↔ X2Σ+跃迁的跃迁性质影响很小, 可以忽略. A2∏(v′ )↔ X2Σ+(v″ )跃迁具有高对角分布的弗兰克-康登因子以及较小的自发辐射寿命, 同时得到了激光冷却所LiCl–阴离子需的激光波长. 在自旋无关水平下预测LiCl–阴离子是适合激光冷却的候选离子.[1] Micheli A, Brennen G, Zoller P 2006 Nat. Phys. 2 341
Google Scholar
[2] Baron J et al., (The ACME Collaboration). 2014 Science 343 269
Google Scholar
[3] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
Google Scholar
[4] Shuman E S, Barry J F, DeMille D 2010 Nature 467 820
Google Scholar
[5] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001
Google Scholar
[6] You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502
Google Scholar
[7] Wan M J, Shao J X, Huang D H, Jin C G, Yu Y, Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731
Google Scholar
[8] Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G, Wang F H 2015 J Chem. Phys. 143 024302
Google Scholar
[9] Yang Q S, Li S C, Yu Y, Gao T 2018 J. Phys. Chem. A 122 3021
Google Scholar
[10] Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302
Google Scholar
[11] Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309
Google Scholar
[12] Yuan X, Yin S, Shen Y, Liu Y, Lian Y, Xu H F, Yan B 2018 J. Chem. Phys. 149 094306
Google Scholar
[13] Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001
Google Scholar
[14] Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta, Part A. 182 130
Google Scholar
[15] Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta, Part A. 185 365
Google Scholar
[16] Wan M J, Huang D H, Yu Y, Zhang Y G 2017 Phys. Chem. Chem. Phys. 17 27360
[17] 万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103
Google Scholar
Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103
Google Scholar
[18] 万明杰, 罗华锋, 袁娣, 李松 2019 物理学报 68 173102
Google Scholar
Wan M J, Luo H F, Yuan D, Li S 2019 Acta Phys. Sin. 68 173102
Google Scholar
[19] 万明杰, 柳福提, 黄多辉 2021 物理学报 70 033101
Google Scholar
Wan M J, Liu F T, Huang D H, 2021 Acta Phys. Sin. 70 033101
Google Scholar
[20] Carlsten J L, Peterson J R. Lineberger W C 1976 Chem. Phys. Lett. 37 5
Google Scholar
[21] Miller T M, Leopold D G, Murray K K, Lineberger W C 1986 J. Chem. Phys. 85 2368
Google Scholar
[22] Jordan K D, Luken W 1976 J Chem. Phys. 64 2760
Google Scholar
[23] Li S, Zheng R, Chen S J, Fan Q C 2015 Mol. Phys. 113 1433
Google Scholar
[24] Weck P F, Kirby K, Stancil P C 2004 J. Chem. Phys. 120 4216
Google Scholar
[25] Kurosaki Y, Yokoyama K 2012 J. Chem. Phys. 137 064305
Google Scholar
[26] Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (Version 2010.1)
[27] Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053
Google Scholar
[28] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
Google Scholar
[29] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
Google Scholar
[30] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
Google Scholar
[31] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1283
[32] Xiao K L, Yang C L, Wang M S, Ma X G, Liu W W 2013 J. Chem. Phys. 139 074305
Google Scholar
[33] Weigend F 2008 J. Comput. Chem. 29 167
Google Scholar
[34] Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548
Google Scholar
[35] Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663)
[36] Haeffler G, Hanstrorp D, Kiyan I, Klinkmueller A E, Ljungblad U, Pegg D 1996 Phys. Rev. A 53 4127
Google Scholar
[37] Berzinsh U, Gustafsson M, Hanstorp D, Klinkmueller A E, Ljungblad U, Maartensson-Pendrill A M 1995 Phys. Rev. A 51 231
Google Scholar
[38] Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: US Govt Printing Office) pp9, 195
[39] 尹俊豪, 杨涛, 印建平 2021 物理学报 70 163302
Google Scholar
Yin J H, Yang T, Yin J P 2021 Acta Phys. Sin. 70 163302
Google Scholar
期刊类型引用(0)
其他类型引用(2)
-
表 1 LiCl–阴离子Λ-S态的离解关系
Table 1. Calculated dissociation relationships of the Λ-S states of LiCl– anion.
表 2 LiCl–阴离子Λ-S态的光谱常数
Table 2. Spectroscopic parameters of the Λ-S states of LiCl– anion.
电子态 Re/Å ωe/cm–1 ωeχe/cm–1 Be/cm–1 De/eV D0/eV Te/cm–1 X2Σ+ 2.1352 535.33 5.8173 0.7205 1.8886 1.856 0 实验值[20] 2.18(4) 0 实验值[21] 2.123(15) 1.75(2) 0 理论值[22] 2.12a 0 理论值[23] 2.1354 537.7b 6.34b 0.7203b 1.81 0 A2∏ 2.1198 554.65 5.7157 0.7310 1.9902 1.9559 13431.93 B2Σ+ 2.0282 652.79 6.1252 0.7985 1.6653 1.6250 17491.75 32Σ+ 5.8594 30.19 0.8483 0.0963 0.0362 0.0353 38607.64 22∏ 7.1411 39.08 0.5616 0.0638 0.0136 0.0112 38855.32 a采用HF方法计算得到基态的核间距. 表 3 X2Σ+, A2∏, B2Σ+, 32Σ+和22∏态的振动能级和转动常数
Table 3. Vibrational energy levels, rotational constants of the X2Σ+, A2∏, B2Σ+, 32Σ+ and 22∏ states.
ν X2Σ+ A2∏ B2Σ+ 32Σ+ 22∏ Gν Bν Gν Bν Gν Bν Gν Bν Gν Bν 本文工作 文献[23] 本文工作 文献[23] 本文工作 本文工作 本文工作 本文工作 本文工作 本文工作 本文工作 本文工作 0 266.72 264.07 0.7146 0.7143 276.48 0.7252 325.33 0.7927 14.96 0.0940 6.12 0.0631 1 790.93 791.77 0.7029 0.7023 820.21 0.7136 966.07 0.7811 43.02 0.0893 18.15 0.0618 2 1303.27 1307.01 0.6911 0.6903 1352.13 0.7021 1594.23 0.7697 68.84 0.0857 28.92 0.0572 3 1803.71 1809.92 0.6794 0.6784 1872.34 0.6907 2210.02 0.7584 93.22 0.0826 29.30 0.0095 4 2292.31 2300.65 0.6677 0.6666 2380.97 0.6793 2813.56 0.7471 116.24 0.0796 31.32 0.0112 5 2769.15 2779.34 0.6560 0.6548 2878.13 0.6680 3404.89 0.7359 138.17 0.0765 33.19 0.0125 6 3234.29 3246.11 0.6444 0.6430 3363.87 0.6567 3984.09 0.7247 158.98 0.0725 35.07 0.0140 7 3687.83 3701.10 0.6328 0.6313 3838.29 0.6455 4551.20 0.7135 178.26 0.0678 36.53 0.0310 8 4129.88 4144.45 0.6212 0.6197 4301.42 0.6343 5106.17 0.7023 195.60 0.0626 37.33 0.0257 9 4560.61 4576.29 0.6097 0.6081 4753.37 0.6231 5648.95 0.6911 210.77 0.0571 39.11 0.0188 表 4 LiCl–阴离子Ω态的离解关系
Table 4. Calculated dissociation relationships of the Ω states of LiCl– anion.
表 5 LiCl–阴离子Ω态的光谱常数
Table 5. Spectroscopic parameters of the Ω states of LiCl– anion at icMRCI+Q level.
Ω态 Re/Å ωe/cm–1 ωeχe /cm–1 Be/cm–1 De/eV Te/cm–1 X2Σ+1/2 2.1352 535.32 5.8172 0.7205 1.8886 0 A2Π1/2 2.1196 554.87 5.7153 0.7311 2.0094 13419.77 A2Π3/2 2.1200 554.41 5.7160 0.7308 2.0059 13444.07 B2Σ+1/2 2.0282 652.79 6.1253 0.7985 1.6679 17491.75 表 6 LiCl–阴离子的自旋-轨道矩阵元
Table 6. Notation of spin-orbit matrix element.
SO矩阵元 SO1=−i⟨X2Σ+|ˆHBPSO|A2Πy⟩ SO2=⟨X2Σ+|ˆHBPSO|A2Πx⟩ SO3=−i⟨B2Σ+|ˆHBPSO|A2Πy⟩ SO4=⟨B2Σ+|ˆHBPSO|A2Πx⟩ SO5=−i⟨32Σ+|ˆHBPSO|A2Πy⟩ SO6=⟨32Σ+|ˆHBPSO|A2Πx⟩ SO7=−i⟨X2Σ+|ˆHBPSO|22Πy⟩ SO8=⟨X2Σ+|ˆHBPSO|22Πx⟩ SO9=−i⟨B2Σ+|ˆHBPSO|22Πy⟩ SO10=⟨B2Σ+|ˆHBPSO|22Πx⟩ SO11=−i⟨32Σ+|ˆHBPSO|22Πy⟩ SO12=⟨32Σ+|ˆHBPSO|22Πx⟩ SO13=i⟨A2Πx|ˆHBPSO|A2Πy⟩ SO14=i⟨22Πx|ˆHBPSO|A2Πy⟩ SO15=i⟨22Πy|ˆHBPSO|A2Πx⟩ SO16=i⟨22Πx|ˆHBPSO|22Πy⟩ 表 7 A2∏
↔ X2Σ+和B2Σ+↔ X2Σ+跃迁的弗兰克-康登因子fν'ν'', 爱因斯坦系数Aν'ν''和自发辐射寿命 (单位: ns)Table 7. Franck-Condon Factors fν'ν'', Einstein coefficients Aν'ν'', and radiative lifetimes τ of the A2∏
↔ X2Σ+ and B2Σ+↔ X2Σ+ transitions of LiCl– anion(in ns).跃迁 f00 f01 f02 f03 A00 A01 A02 A03 τ = 1/ΣA f10 f11 f12 f13 A10 A11 A12 A13 A2∏ ↔ X2Σ+ 0.9898 0.0101 0.0001 8.70(–7) 27904200 298313 3848.85 44.60 35.45 0.0102 0.9686 0.0209 0.0004 269660 27336600 607335 12332 35.43 B2Σ+ ↔ X2Σ+ 0.5908 0.2909 0.0894 0.0225 18316800 7658290 2038730 452210 34.99 0.3266 0.1286 0.2888 0.1671 12279600 4261780 7988480 3979390 33.00 -
[1] Micheli A, Brennen G, Zoller P 2006 Nat. Phys. 2 341
Google Scholar
[2] Baron J et al., (The ACME Collaboration). 2014 Science 343 269
Google Scholar
[3] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
Google Scholar
[4] Shuman E S, Barry J F, DeMille D 2010 Nature 467 820
Google Scholar
[5] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001
Google Scholar
[6] You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502
Google Scholar
[7] Wan M J, Shao J X, Huang D H, Jin C G, Yu Y, Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731
Google Scholar
[8] Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G, Wang F H 2015 J Chem. Phys. 143 024302
Google Scholar
[9] Yang Q S, Li S C, Yu Y, Gao T 2018 J. Phys. Chem. A 122 3021
Google Scholar
[10] Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302
Google Scholar
[11] Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309
Google Scholar
[12] Yuan X, Yin S, Shen Y, Liu Y, Lian Y, Xu H F, Yan B 2018 J. Chem. Phys. 149 094306
Google Scholar
[13] Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001
Google Scholar
[14] Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta, Part A. 182 130
Google Scholar
[15] Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta, Part A. 185 365
Google Scholar
[16] Wan M J, Huang D H, Yu Y, Zhang Y G 2017 Phys. Chem. Chem. Phys. 17 27360
[17] 万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103
Google Scholar
Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103
Google Scholar
[18] 万明杰, 罗华锋, 袁娣, 李松 2019 物理学报 68 173102
Google Scholar
Wan M J, Luo H F, Yuan D, Li S 2019 Acta Phys. Sin. 68 173102
Google Scholar
[19] 万明杰, 柳福提, 黄多辉 2021 物理学报 70 033101
Google Scholar
Wan M J, Liu F T, Huang D H, 2021 Acta Phys. Sin. 70 033101
Google Scholar
[20] Carlsten J L, Peterson J R. Lineberger W C 1976 Chem. Phys. Lett. 37 5
Google Scholar
[21] Miller T M, Leopold D G, Murray K K, Lineberger W C 1986 J. Chem. Phys. 85 2368
Google Scholar
[22] Jordan K D, Luken W 1976 J Chem. Phys. 64 2760
Google Scholar
[23] Li S, Zheng R, Chen S J, Fan Q C 2015 Mol. Phys. 113 1433
Google Scholar
[24] Weck P F, Kirby K, Stancil P C 2004 J. Chem. Phys. 120 4216
Google Scholar
[25] Kurosaki Y, Yokoyama K 2012 J. Chem. Phys. 137 064305
Google Scholar
[26] Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (Version 2010.1)
[27] Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053
Google Scholar
[28] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
Google Scholar
[29] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
Google Scholar
[30] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
Google Scholar
[31] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1283
[32] Xiao K L, Yang C L, Wang M S, Ma X G, Liu W W 2013 J. Chem. Phys. 139 074305
Google Scholar
[33] Weigend F 2008 J. Comput. Chem. 29 167
Google Scholar
[34] Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548
Google Scholar
[35] Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663)
[36] Haeffler G, Hanstrorp D, Kiyan I, Klinkmueller A E, Ljungblad U, Pegg D 1996 Phys. Rev. A 53 4127
Google Scholar
[37] Berzinsh U, Gustafsson M, Hanstorp D, Klinkmueller A E, Ljungblad U, Maartensson-Pendrill A M 1995 Phys. Rev. A 51 231
Google Scholar
[38] Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: US Govt Printing Office) pp9, 195
[39] 尹俊豪, 杨涛, 印建平 2021 物理学报 70 163302
Google Scholar
Yin J H, Yang T, Yin J P 2021 Acta Phys. Sin. 70 163302
Google Scholar
期刊类型引用(0)
其他类型引用(2)
Catalog
Metrics
- Abstract views: 5723
- PDF Downloads: 84
- Cited By: 2