Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of laser cooling of potassium chloride anion

Wan Ming-Jie Luo Hua-Feng Yuan Di Li Song

Citation:

Theoretical study of laser cooling of potassium chloride anion

Wan Ming-Jie, Luo Hua-Feng, Yuan Di, Li Song
PDF
HTML
Get Citation
  • The potential energy curves and transition dipole moments (TDMs) for three Λ-S states (X2Σ+, A2Π, and B2Σ+) of potassium chloride anion (KCl) are investigated by using multi-reference configuration interaction (MRCI) method. The def2-AQZVPP-JKFI of K atom and AV5Z-DK all-electron basis set of Cl atom are used in all calculations. The Davidson correction, core-valence (CV) correction, and spin-orbit coupling effect (SOC) are also considered. In the complete active self-consistent field (CASSCF) calculations, eight molecular orbitals are selected as active orbitals, which includ K 4s4p and Cl 3s3p shells; K 3p shell is closed orbital, and the remaining shells (K 1s2s3s and Cl 1s2s2p) are frozen orbitals. In the MRCI+Q calculations, K 3p shell is used for the CV correction. There are 15 electrons in the correlation energy calculations. Then, their spectroscopic parameters, Einstein coefficients, Franck-Condon factors, and radiative lifetimes are obtained by solving the radial Schrödinger equation. The spectroscopic properties and transition properties for the Ω states are predicted. Highly diagonally distributed Franck-Condon factor f00 values for the (2)1/2↔(1)1/2 and (1)3/2↔(1)1/2 transition are 0.8816 and 0.8808, respectively. And the short radiative lifetimes for the (2)1/2 and (1)3/2 excited states are also obtained, i.e. τ[(2)1/2] = 45.7 ns and τ[(1)3/2] = 45.5 ns, which can ensure laser cooling of KCl anion rapidly. The results indicate that the (2)1/2↔(1)1/2 and (1)3/2↔(1)1/2 quasicycling transitions are suitable to the building of laser cooling projects. For driving the (2)1/2↔(1)1/2 transition, a main pump laser (λ00) and two repumping lasers (λ10 and λ21) are required. Their wavelengths are λ00 = 1065.77 nm, λ10 = 1090.13 nm and λ21 = 1087.76 nm. For driving the (1)3/2↔(1)1/2 transition, the wavelengths are λ00 = 1064.24 nm, λ10 = 1088.54 nm, and λ21 = 1086.17 nm. The cooling wavelengths of KCl- anion for two transitions are both deep in the infrared range. Finally, the Doppler temperature and recoil temperature for two transitions are also calculated, respectively. The Doppler temperatures for (2)1/2↔(1)1/2 and (1)3/2(1)1/2 transitions are 83.57 μK and 83.93 μK, and the recoil temperatures for two transitions are 226 nK and 227 nK, respectively. for two transitions are 226 nK and 227 nK, respectively.
      Corresponding author: Wan Ming-Jie, wanmingjie1983@sina.com
    • Funds: Project supported by the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11647075) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. JSWL2018KFZ03).
    [1]

    van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A, Meijer G 2004 Eur. Phys. J. D 31 337Google Scholar

    [2]

    Micheli A, Brennen G K, Zoller P 2006 Nat. Phys. 2 341Google Scholar

    [3]

    Willitsch S, Bell M T, Gingell A D, Procter S R, Softley T P 2008 Phys. Rev. Lett. 100 043203Google Scholar

    [4]

    Shuman E S, Barry J F, de Mille D 2010 Nature 467 820Google Scholar

    [5]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [6]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [7]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [8]

    张云光, 张华, 窦戈, 徐建刚 2017 物理学报 66 233101Google Scholar

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101Google Scholar

    [9]

    Cui J, Xu J G, Qi J X, Dou G, Zhang Y G 2018 Chin. Phys. B 27 103101Google Scholar

    [10]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001Google Scholar

    [11]

    Wan M, Huang D, Yu Y, Zhang Y 2017 Phys. Chem. Chem. Phys. 19 27360Google Scholar

    [12]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [13]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 182 130Google Scholar

    [14]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 185 365Google Scholar

    [15]

    Huber K P, Herzberg G 1979 Constants of Diatomic Molecules (Vol. IV): Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold) p358

    [16]

    Ram R S, Dulick M, Guo B, Zhang K Q, Bernath P F 1997 J. Mol. Spectrosc. 183 360Google Scholar

    [17]

    Seth M, Pernpointner M, Bowmaker G A, Schwerdtfeger P 1999 Mol. Phys. 96 1767

    [18]

    Wan M J, Shao J X, Huang D H, Jin C G, Yu Y, Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731Google Scholar

    [19]

    Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G, Wang F H 2015 J. Chem. Phys. 143 024302Google Scholar

    [20]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302Google Scholar

    [21]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309Google Scholar

    [22]

    Yuan X, Yin S, Shen Y, Liu Y, Lian Y, Xu H F, Yan B 2018 J. Chem. Phys. 149 094306Google Scholar

    [23]

    Werner H J, Knowles P J, Lindh R, et al. 2010 MOLPRO, version 2010.1, A Package of ab initio Programs, http://www.molpro.net

    [24]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [25]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [26]

    Xiao K L, Yang C L, Wang M S, Ma X G, Liu W W 2013 J. Chem. Phys. 139 074305Google Scholar

    [27]

    Weigend F 2008 J. Comput. Chem. 29 167Google Scholar

    [28]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358Google Scholar

    [29]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [30]

    Le Roy R J Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report CP-663. http://leroy.uwaterloo.ca/programs

    [31]

    Hotop H, Lineberger 1985 J. Phys. Chem. Ref. Data 14 731Google Scholar

    [32]

    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmueller A E, Ljungblad U, Maartensson-Pendrill A M 1995 Phys. Rev. A 51 231Google Scholar

    [33]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) Natl. Stand Ref. Data Ser. Natl. Bur. Stand. No. 35 (Washington, DC: U.S. GPO) p228

    [34]

    Kobayashi J, Aikawa K, Oasa K, Inouye S 2014 Phys. Rev. A 89 021401Google Scholar

    [35]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707Google Scholar

  • 图 1  KCl-阴离子的势能曲线 (a) Λ-S态; (b) Ω态

    Figure 1.  Potential energy curves of KCl anion: (a) Λ-S states; (b) Ω states.

    图 2  KCl-阴离子的偶极矩

    Figure 2.  Dipole moments (DMs) of KCl- anion.

    图 3  KCl阴离子的跃迁偶极矩

    Figure 3.  Transition dipole moments (TDMs) of KCl anion

    图 4  激光冷却KCl阴离子的方案 (a) (2)1/2↔(1)1/2准闭合循环跃迁系统; (b) (1)3/2↔(1)1/2准闭合循环跃迁系统

    Figure 4.  Proposed laser cooling scheme of KCl anion: (a) Using (2)1/2↔(1)1/2 transition; (b) using (1)3/2↔(1)1/2 transition.

    表 1  KCl阴离子Ω电子态的离解极限

    Table 1.  The dissociation relationship for the Ω states of KCl anion.

    原子态Ω态ΔE/cm–1
    计算值实验值[33]
    K(2S1/2) + Cl(1S0)(1)1/200
    K(2P1/2) + Cl(1S0)(2)1/212997.9412985.17
    K(2P3/2) + Cl(1S0)(3)1/2, (1)3/213046.2313042.89
    DownLoad: CSV

    表 2  KCl阴离子的Ω态的光谱常数

    Table 2.  Spectroscopic parameters for the Ω states of KCl anion.

    Ω态对应的Λ-S态Reωe/cm–1Be/cm–1De/eVTe/cm–1
    (1)1/2X2Σ+2.8290212.340.11431.34830
    (2)1/2A2Π2.7839229.640.11801.79769375.30
    (1)3/2A2Π2.7836229.650.11801.80189388.68
    (3)1/2B2Σ+2.7550235.480.12051.386512746.21
    DownLoad: CSV

    表 3  (2)1/2↔(1)1/2和(1)3/2↔(1)1/2跃迁的FCFs, Aν′ν′′τ

    Table 3.  FCFs, spontaneous emission rates Aν′ν′′ and spontaneous radiative lifetime τ for the (2)1/2↔(1)1/2 and (1)3/2↔(1)1/2 transitions.

    跃迁ν′′0123
    (2)1/2↔(1)1/2Aν′ν′′/s–11.9384(7)a2.3044(6)1.7867(5)1.1906(4)
    ν′ = 0fν′ν′′0.88160.10900.00880.0006
    τ/ns45.7
    Aν′ν′′/s–12.5793(6)1.4757(7)4.0633(6)5.0295(5)
    ν′ = 1fν′ν′′0.11280.66870.19140.0246
    τ/ns45.5
    Aν′ν′′/s–11.3368(5)4.7122(6)1.0816(7)5.3057(6)
    ν′ = 2fν′ν′′0.00560.20520.48830.2490
    τ/ns45.4
    (1)3/2↔(1)1/2Aν′ν′′/s–11.9451(7)2.3276(6)1.8184(5)1.2242(4)
    ν′ = 0fν′ν′′0.88080.10960.00890.0006
    τ/ns45.5
    Aν′ν′′/s–12.6063(6)1.4777(7)5.1089(5)4.7631(4)
    ν′ = 1fν′ν′′0.11340.66680.19240.0249
    τ/ns45.4
    Aν′ν′′/s–11.3578(5)4.7578(6)1.0803(7)5.3483(6)
    ν′ = 2fν′ν′′0.00570.20630.48570.2499
    τ/ns45.2
    注: a1.9384(7)表示1.9384 × 107.
    DownLoad: CSV

    表 4  (3)1/2↔(1)1/2, (3)1/2↔(2)1/2和(3)1/2↔(1)3/2跃迁的FCF, 总辐射速率A0和辐射寿命

    Table 4.  FCFs, total emission rates A0 and τ for the (3)1/2↔(1)1/2, (3)1/2↔(2)1/2 and (3)1/2↔(1)3/2 transitions.

    跃迁f00A0/s–1τ0/s
    (3)1/2↔(1)1/20.71222.6535(7)3.77(–8)
    (3)1/2↔(2)1/20.94842.3716(5)4.22(–6)
    (3)1/2↔(1)3/20.94902.3435(5)4.27(–6)
    注: a1.9384(7)表示1.9384 × 107.
    DownLoad: CSV
  • [1]

    van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A, Meijer G 2004 Eur. Phys. J. D 31 337Google Scholar

    [2]

    Micheli A, Brennen G K, Zoller P 2006 Nat. Phys. 2 341Google Scholar

    [3]

    Willitsch S, Bell M T, Gingell A D, Procter S R, Softley T P 2008 Phys. Rev. Lett. 100 043203Google Scholar

    [4]

    Shuman E S, Barry J F, de Mille D 2010 Nature 467 820Google Scholar

    [5]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [6]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [7]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [8]

    张云光, 张华, 窦戈, 徐建刚 2017 物理学报 66 233101Google Scholar

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101Google Scholar

    [9]

    Cui J, Xu J G, Qi J X, Dou G, Zhang Y G 2018 Chin. Phys. B 27 103101Google Scholar

    [10]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001Google Scholar

    [11]

    Wan M, Huang D, Yu Y, Zhang Y 2017 Phys. Chem. Chem. Phys. 19 27360Google Scholar

    [12]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [13]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 182 130Google Scholar

    [14]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 185 365Google Scholar

    [15]

    Huber K P, Herzberg G 1979 Constants of Diatomic Molecules (Vol. IV): Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold) p358

    [16]

    Ram R S, Dulick M, Guo B, Zhang K Q, Bernath P F 1997 J. Mol. Spectrosc. 183 360Google Scholar

    [17]

    Seth M, Pernpointner M, Bowmaker G A, Schwerdtfeger P 1999 Mol. Phys. 96 1767

    [18]

    Wan M J, Shao J X, Huang D H, Jin C G, Yu Y, Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731Google Scholar

    [19]

    Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G, Wang F H 2015 J. Chem. Phys. 143 024302Google Scholar

    [20]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302Google Scholar

    [21]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309Google Scholar

    [22]

    Yuan X, Yin S, Shen Y, Liu Y, Lian Y, Xu H F, Yan B 2018 J. Chem. Phys. 149 094306Google Scholar

    [23]

    Werner H J, Knowles P J, Lindh R, et al. 2010 MOLPRO, version 2010.1, A Package of ab initio Programs, http://www.molpro.net

    [24]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [25]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [26]

    Xiao K L, Yang C L, Wang M S, Ma X G, Liu W W 2013 J. Chem. Phys. 139 074305Google Scholar

    [27]

    Weigend F 2008 J. Comput. Chem. 29 167Google Scholar

    [28]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358Google Scholar

    [29]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [30]

    Le Roy R J Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report CP-663. http://leroy.uwaterloo.ca/programs

    [31]

    Hotop H, Lineberger 1985 J. Phys. Chem. Ref. Data 14 731Google Scholar

    [32]

    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmueller A E, Ljungblad U, Maartensson-Pendrill A M 1995 Phys. Rev. A 51 231Google Scholar

    [33]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) Natl. Stand Ref. Data Ser. Natl. Bur. Stand. No. 35 (Washington, DC: U.S. GPO) p228

    [34]

    Kobayashi J, Aikawa K, Oasa K, Inouye S 2014 Phys. Rev. A 89 021401Google Scholar

    [35]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707Google Scholar

  • [1] Feng Zhuo, Suo Bing-Bing, Han Hui-Xian, Li An-Yang. High-precision electron structure calculation of CaSH molecules and theoretical analysis of its application to laser-cooled target molecules. Acta Physica Sinica, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] Wang Xin-Yu, Wang Yi-Lin, Shi Qian-Han, Wang Qing-Long, Yu Hong-Yang, Jin Yuan-Yuan, Li Song. Theoretical study of potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [3] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [4] Hou Qiu-Yu, Guan Hao-Yi, Huang Yu-Lu, Chen Shi-Lin, Yang Ming, Wan Ming-Jie. Electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [5] Hou Qiu-Yu,  Guan Hao-Yi,  Huang Yu-Lu,  Chen Shi-Lin,  Yang Ming,  Wan Ming-Jie. The electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [6] Theoretical study of the potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211441
    [7] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [8] Yin Jun-Hao, Yang Tao, Yin Jian-Ping. Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling. Acta Physica Sinica, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [9] Wan Ming-Jie, Liu Fu-Ti, Huang Duo-Hui. Spectroscopic and transition properties of SeH anion including spin-orbit coupling. Acta Physica Sinica, 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [10] Hua Ya-Wen, Liu Yi-Liang, Wan Ming-Jie. Theoretical study on electronic structure and transition properties of excited states for SeH+ anion. Acta Physica Sinica, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [11] Chen Tao, Yan Bo. Laser cooling and trapping of polar molecules. Acta Physica Sinica, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [12] Wan Ming-Jie, Li Song, Jin Cheng-Guo, Luo Hua-Feng. Theoretical study of laser-cooled SH anion. Acta Physica Sinica, 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [13] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [14] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [15] Zhang Yun-Guang, Zhang Hua, Dou Ge, Xu Jian-Gang. Laser cooling of OH molecules in theoretical approach. Acta Physica Sinica, 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [16] Liu Hua-Bing, Yuan Li, Li Qiu-Mei, Chen Xiao-Hong, Du Quan, Jin Rong, Chen Xue-Lian, Wang Lin. Theoretical study of the spectra and radiative transition properties of 6Li32S. Acta Physica Sinica, 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [17] Sun Yu, Feng Gao-Ping, Cheng Cun-Feng, Tu Le-Yi, Pan Hu, Yang Guo-Min, Hu Shui-Ming. Precision spectroscopy of helium using a laser-cooled atomic beam. Acta Physica Sinica, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [18] Zhang Bao-Wu, Zhang Ping-Ping, Ma Yan, Li Tong-Bao. Simulations of one-dimensional transverse laser cooling of Cr atomic beam with Monte Carlo method. Acta Physica Sinica, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [19] Zhang Peng-Fei, Xu Xin-Ping, Zhang Hai-Chao, Zhou Shan-Yu, Wang Yu-Zhu. UV light-induced atom desorption for magnetic trap in single vacuum chamber. Acta Physica Sinica, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [20] Xie Min, Ling Lin, Yang Guo-Jian. Velocity-selective coherent population trapping of a nondegenerate Λ three-level atom. Acta Physica Sinica, 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
Metrics
  • Abstract views:  11384
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2019
  • Accepted Date:  13 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回