-
In this paper, high-level ab initio calculations by using multi-configuration self-consistent field method with atomic effective core potential, polarization potential, and uncontracted Gaussian basis function, are performed to compute the potential energy curves of a total of 36 low-lying ∧-S states with ∑g,u, Πg,u, △g,u symmetries of Na2+ cation associated with the lowest 9 dissociation limits Na (3s, 3p, 4s, 3d, 4p, 5s, 4d, 4f, 5p)+Na+. On the basis of the potential energy curves, the spectroscopic constants (Te, Re, ωe, ωeχe, Be, α e, De) of the bound states are determined, which are in good agreement with the existing available experimental and theoretical values. Our results indicate that 52∑g+-72∑g+, 32∑u+-72∑u+, 22Πg, 42Πg, 12△u and 22△u states are repulsive, which supports Berriche's results, and we report 10 electron states for the first time, that is, 82∑g, u+-92∑g, u+, 52Πg, u-72Πg, u and 32△g, u. The vibrational-rotational spectroscopic constants and lowest vibrational-rotational energy levels (ν=0-20) of the bound states are also presented. Moreover, in order to illustrate the strong state interactions of adjacent states with same symmetry, the information about the avoided crossing points is shown in detail. Finally, the transition dipole moments from a few low-lying excited states (12Πu-32Πu) to the ground state X2∑g+ are computed. Therefore, it is expected that our computational results in the present calculations are significant for the molecular spectroscopy, ion-atom interaction and molecular cold collision fields.
[1] Magnier S, Persico M, Rahman N 1997 Chem. Phys. Lett. 279 361
[2] Magnier S, Persico M, Rahman N 1999 J. Phys. Chem. A 103 10691
[3] Magnier S, Persico M, Rahman N 1999 Phys. Rev. Lett. 83 2159
[4] Bewicz A, Musial M, Kucharski S A 2017 Mol. Phys. 115 2649
[5] Berriche H 2013 Int. J. Quantum Chem. 113 2405
[6] Patil S H, Tang K T 2000 J. Phys. Chem. 113 676
[7] Magnier S, Masnou-Seeuws F 1996 Mol. Phys. 89 711
[8] Henriet A 1985 J. Phys. B: At. Mol. Phys. 18 3085
[9] Müller W, Meyer W 1984 J. Chem. Phys. 80 3311
[10] Bähring A, Hertel I V, Meyer E, Meyer W, Spies N, Schmidt H 1984 J. Phys. B: At. Mol. Phys. 17 2859
[11] Henriet A, Masnou-Seeuws F 1983 Chem. Phys. Lett. 101 535
[12] Fuentealba P, Preuss H, Stoll H, von Szentpály L 1982 Chem. Phys. Lett. 89 418
[13] Bardsley J N, Junker B R, Norcross D W 1976 Chem. Phys. Lett. 37 502
[14] Cerjan C J, Docken K K, Dalgarno A 1976 Chem. Phys. Lett. 38 401
[15] Berriche H 2013 Int. J. Quantum Chem. 113 2405
[16] Werner H J, Knowles P, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 Molpro Version 2010.1: A Package of ab initio Programs
[17] Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242
[18] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[19] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[20] LeRoy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels, Chemical Physics: Research Report CP-663 (Ontario, Canada: University of Waterloo).
[21] NIST Chemistry WebBook 2018 https://webbook.nist.gov/chemistry/ [2018-9-10]
[22] Bordas C, Broyer M, Vialle J L 1990 J. Chem. Phys. 92 4030
[23] Bordas C, Labastie P, Chevaleyre J, Broyer M 1989 Chem. Phys. 129 21
[24] Magnier S, Aubert-Frécon M 2001 J. Phys. Chem. A 105 165
[25] Spiegelmann F, Pavolini D 1988 J. Chem. Phys. 89 4954
[26] Partridge H, Bauschlicher C W 1992 Theor. Chim. Acta 83 201
-
[1] Magnier S, Persico M, Rahman N 1997 Chem. Phys. Lett. 279 361
[2] Magnier S, Persico M, Rahman N 1999 J. Phys. Chem. A 103 10691
[3] Magnier S, Persico M, Rahman N 1999 Phys. Rev. Lett. 83 2159
[4] Bewicz A, Musial M, Kucharski S A 2017 Mol. Phys. 115 2649
[5] Berriche H 2013 Int. J. Quantum Chem. 113 2405
[6] Patil S H, Tang K T 2000 J. Phys. Chem. 113 676
[7] Magnier S, Masnou-Seeuws F 1996 Mol. Phys. 89 711
[8] Henriet A 1985 J. Phys. B: At. Mol. Phys. 18 3085
[9] Müller W, Meyer W 1984 J. Chem. Phys. 80 3311
[10] Bähring A, Hertel I V, Meyer E, Meyer W, Spies N, Schmidt H 1984 J. Phys. B: At. Mol. Phys. 17 2859
[11] Henriet A, Masnou-Seeuws F 1983 Chem. Phys. Lett. 101 535
[12] Fuentealba P, Preuss H, Stoll H, von Szentpály L 1982 Chem. Phys. Lett. 89 418
[13] Bardsley J N, Junker B R, Norcross D W 1976 Chem. Phys. Lett. 37 502
[14] Cerjan C J, Docken K K, Dalgarno A 1976 Chem. Phys. Lett. 38 401
[15] Berriche H 2013 Int. J. Quantum Chem. 113 2405
[16] Werner H J, Knowles P, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 Molpro Version 2010.1: A Package of ab initio Programs
[17] Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242
[18] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[19] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[20] LeRoy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels, Chemical Physics: Research Report CP-663 (Ontario, Canada: University of Waterloo).
[21] NIST Chemistry WebBook 2018 https://webbook.nist.gov/chemistry/ [2018-9-10]
[22] Bordas C, Broyer M, Vialle J L 1990 J. Chem. Phys. 92 4030
[23] Bordas C, Labastie P, Chevaleyre J, Broyer M 1989 Chem. Phys. 129 21
[24] Magnier S, Aubert-Frécon M 2001 J. Phys. Chem. A 105 165
[25] Spiegelmann F, Pavolini D 1988 J. Chem. Phys. 89 4954
[26] Partridge H, Bauschlicher C W 1992 Theor. Chim. Acta 83 201
Catalog
Metrics
- Abstract views: 6167
- PDF Downloads: 21
- Cited By: 0