-
A comprehensive theoretical study on the low-energy electronic states of the superoxide anion (O-2) is presented, focusing on the effects of spin-orbit coupling (SOC) on these states. Utilizing the complete active space self-consistent field (CASSCF) method combined with the multireference configuration interaction method with Davidson correction (MRCI+Q), and employing the aug-cc-pV5Z-dk basis set that includes Douglas-Kroll relativistic corrections, electron correlation and relativistic effects are accurately considered. The research concentrates on the first and second dissociation limits of O-2, calculating the potential energy curves (PECs) and spectroscopic constants of 42 Λ-S states. After introducing SOC, 84 Ω states are obtained through splitting, and their PECs and spectroscopic constants are calculated. Detailed data on the electronic states related to the second dissociation limit are provided for the first time. The results show excellent agreement with existing literature, validating the reliability of the methodology. For the first time, this study confirms through calculations with different basis sets that the double-well structure of the a4Σ-u state originates from an avoided crossing with the 24Σ-u state, and finds that the size of the basis set significantly affects the depth of its potential wells. After considering SOC, the total energy of the system decreases, especially for states with high orbital angular momentum (such as the 1²Φu and 1⁴Δg states), leading to energy level splitting and energy reduction, while other spectroscopic constants remain essentially unchanged. These findings provide valuable theoretical insights into the electronic structure and spectroscopic properties of O-2, offering important reference data for future research in fields such as atmospheric chemistry, plasma physics, and molecular spectroscopy. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00076.
-
Keywords:
- O-2 /
- MRCI+Q /
- spin-orbit coupling /
- spectroscopic constants
-
[1] Burch D S, Smith S J, Branscomb L M 1958 Phys. Rev. 112 171
[2] Celotta R J, Bennett R A, Hall J L, Siegel M W, Levine J 1972 Phys. Rev. A 6 631
[3] Reid G C 1976 Adv. At. Mol. Phys. 12 375
[4] Travers M J, Cowles D C, Ellison G B 1989 Chem. Phys. Lett. 164 449
[5] Ewig C S, Tellinghuisen J 1991 J. Chem. Phys. 95 1097
[6] Lavrich D J, Buntine M A, Serxner D, Johnson M A 1993 J. Chem. Phys. 99 5910
[7] Karpinska B, Foyer C H, Mhamdi A 2024 J. Exp. Bot. 75 4599
[8] Guo J L, Li C Y, Hu C F, Shen Y N 2014 Chemistry 77 146 (in Chinese) [郭金玲,李常燕,胡长峰, 沈岳年 2014 化学通报 77 146]
[9] Dai Y J, Zhao L 2024 Sci. Technol. Food Ind. 45 388 (in Chinese) [戴一佳, 赵亮 2024 食品工业科技 45 388]
[10] Wang Z F, Dai H, Gao Y X, Li Z, Du S Y 2024 J. South. Agric. 55 578 (in Chinese) [王兆丰,代华,高义霞,李昭, 杜石勇 2024 南方农业学报 55 578]
[11] Wen X F 2019 M.S. Thesis (Hebei:Hebei University of Science and Technology) (in Chinese) [温晓芳 2019 硕士学位论文 (河北:河北科技大学)]
[12] Wang Q Q, Wu S P, Yang J H, Li J, Sun X Y, Yang T T, Mao G J 2024 Microchem. J. 200 110288
[13] Neuman E W 1934 J. Chem. Phys. 2 31
[14] Land J E, Raith W 1974 Phys. Rev. A 9 1592
[15] Rolfe J 1979 J. Chem. Phys. 70 2463
[16] Chen E S, Wentworth W E, Chen E C M 2002 J. Mol. Struct. 606 1
[17] Dinu L, Groenenboom G C, van der Zande W J 2003 J. Chem. Phys. 119 8864
[18] Das G, Zemke W T, Stwalley W C 1980 J. Chem. Phys. 72 2327
[19] Michels H H 1981 Adv. Chem. Phys. (John Wiley & Sons, Ltd) pp225-340
[20] Brve K J, Siegbahn P E M 1990 Theor. Chim. Acta 77 409
[21] Nakatsuji H, Nakai H 1992 Chem. Phys. Lett. 197 339
[22] González Luque R, Merchán M, Fülscher M P, Roos B O 1993 Chem. Phys. Lett. 204 323
[23] Chandrasekher C A, Griffith K S, Gellene G I 1996 Int. J. Quantum Chem. 58 29
[24] Sordo J A 2001 J. Chem. Phys. 114 1974
[25] Bruna P J, Grein F 1999 Mol. Phys. 97 321
[26] Stampfuß P, Wenzel W 2003 Chem. Phys. Lett. 370 478
[27] Liu H, Shi D H, Sun J F, Zhu Z L 2016 Mol. Phys. 114 3150
[28] Wang Q X, Wang Y M, Ma R, Yan B 2019 Chin. Phys. B 28 073101
[29] Kreplin D A, Knowles P J, Werner H J 2019 J. Chem. Phys. 150
[30] Knowles P J, Werner H J 1992 Theor. Chim. Acta 84 95
[31] Werner H J, Knowles P J, Manby F R, Black J A, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M 2020 J. Chem. Phys. 152 144107
[32] Moore C E 1971 Atomic energy levels as derived from the analyses of optical spectra::volume I. 1H to 23V (Gaithersburg,MD: National Institute of Standards and Technology)
[33] Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167
[34] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Springer New York) pp15-716
[35] Ervin K M, Anusiewicz I, Skurski P, Simons J, Lineberger W C 2003 J. Phys. Chem. A 107 8521
[36] Das G, Wahl A C, Zemke W T, Stwalley W C 1978 J. Chem. Phys. 68 4252
[37] Schiedt J, Weinkauf R 1999 Rev. Sci. Instrum. 70 2277
Metrics
- Abstract views: 126
- PDF Downloads: 1
- Cited By: 0