Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule

Xing Wei Li Sheng-Zhou Sun Jin-Feng Cao Xu Zhu Zun-Lue Li Wen-Tao Li Yue-Yi Bai Chun-Xu

Citation:

Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule

Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu
PDF
HTML
Get Citation
  • On the basis of correcting various errors caused by spin-orbit coupling effects, scalar relativity effects, core-valence correlation effects and basis set truncation, the potential energy curves of 10 Λ-S states and 26 Ω states of AlH molecule are calculated by using icMRCI + Q method. The transition dipole moments of 6 pairs of transitions between the ${\rm X}{}^1\Sigma _{{0^ + }}^ + $, $ {\rm a^3}{\Pi _{{0^ + }}} $, ${\rm a^3}{\Pi _1} $, ${\rm a^3}{\Pi _2} $, and ${\rm A^1}{\Pi _1} $ states are calculated by using the icMRCI/AV6Z* theory with the consideration of spin-orbit coupling effects. The spectral and transition data obtained here for AlH molecule are in very good agreement with the available experimental measurements. The findings are below. 1) The transition intensities are relatively strong of the Q(J″) branches for the (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4) and (1, 5) bands of the A1Π1${\rm X}{}^1\Sigma _{{0^ + }}^ + $ transition, with the increase of J″; the Einstein A coefficients and vibrational branching ratio gradually decrease, and the weighted absorption oscillator strength gradually increases of Δυ = 0 band, the Einstein A coefficient, vibrational branching ratio, and weighted absorption oscillator strength gradually increase for the Δυ ≠ 0 bands. 2) The radiation lifetimes of A1Π1(υ' = 0, 1) increases slowly as the J' increases. 3) The A1Π1(υ' = 0 and 1, J' = 1, +) →${\rm X}{}^1\Sigma _{{0^ + }}^ + $(υ'' = 0–3, J'′ = 1, –) transition of AlH molecule satisfies the criteria for laser cooling of diatomic molecules, that is, the vibrational branching ratio of the highly diagonal distribution, the extremely short radiation lifetimes of the A1Π1(υ' = 0 and 1, J' = 1, +) states, and the intermediate electronic states $ {\rm a^3}{\Pi _{{0^ + }}} $, a3Π1, and a3Π2 do not interfere with laser cooling. Therefore, based on the cyclic transition A1Π1(υ' = 0 and 1, J' = 1, +) ↔ ${\rm X}{}^1\Sigma _{{0^ + }}^ + $(υ'′ = 0–3, J'' = 1, –), we propose a feasible scheme for laser cooling of AlH molecule. When cooled, 2.541 × 104 photons can be scattered by four pump lasers used in the visible range, which are enough to cool AlH to the ultra-cold temperature, and the Doppler temperature and recoil temperature of the main transition are on the order of μK.
      Corresponding author: Xing Wei, wei19820403@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132, 11274097, 12074328), the Natural Science Foundation of Henan province, China (Grant No. 212300410233), the Natural Science Foundation of the Henan Higher Education Institutions of China (Grant No. 21A140023), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University, China.
    [1]

    Herbig G H 1956 Publ. Astron. Soc. Pac. 68 204Google Scholar

    [2]

    Kamiński T, Wong K T, Schmidt M R, et al. 2016 Astron. Astrophys. 592 A42Google Scholar

    [3]

    Pavlenko Y V, Tennyson J, Yurchenko S N, et al. 2022 Mon. Not. R. Astron. Soc. 516 5655Google Scholar

    [4]

    Karthikeyan B, Rajamanickam N, Bagare S P 2010 Sol. Phys. 264 279Google Scholar

    [5]

    Halfen D T, Ziurys L M 2014 Astrophys. J. 791 65Google Scholar

    [6]

    Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018Google Scholar

    [7]

    Basquin O H 1901 Astrophys. J. 14 1Google Scholar

    [8]

    Deutsch J L, Neil W S, Ramsay D A 1987 J. Mol. Spectrosc. 125 115Google Scholar

    [9]

    White J B, Dulick M, Bernath P F 1993 J. Chem. Phys. 99 8371Google Scholar

    [10]

    Ito F, Nakanaga T, Takeo H, Jones H 1994 J. Mol. Spectrosc. 164 379Google Scholar

    [11]

    Rice J K, Pasternack L, Nelson H H 1992 Chem. Phys. Lett. 189 43Google Scholar

    [12]

    Ram R S, Bernath P F 1996 Appl. Optics. 35 2879Google Scholar

    [13]

    Baltayan P, Nedelec O 1979 J. Chem. Phys. 70 2399Google Scholar

    [14]

    Szajna W, Zachwieja M 2009 Eur. Phys. J. D 55 549Google Scholar

    [15]

    Szajna W, Zachwieja M, Hakalla R, Kępa R 2011 Acta Phys. Pol. A. 120 417Google Scholar

    [16]

    Szajna W, Zachwieja M 2010 J. Mol. Spectrosc. 260 130Google Scholar

    [17]

    Szajna W, Kȩpa R, Para A, Piotrowska I, Ryzner S, Field R W, Heays A N, Hakalla R 2023 J. Mol. Spectrosc. 391 111735Google Scholar

    [18]

    Zhang Y, Stuke M 1988 Chem. Phys. Lett. 149 310Google Scholar

    [19]

    Zhu Y F, Shehadeh R, Grant E R 1992 J. Chem. Phys. 97 883Google Scholar

    [20]

    Tao C, Tan X F, Dagdigian P J, Alexander M H 2003 J. Chem. Phys. 118 10477Google Scholar

    [21]

    Szajna W, Hakalla R, Kolek P, Zachwieja M 2017 J. Quant. Spectrosc. Ra. 187 167Google Scholar

    [22]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 99 1914Google Scholar

    [23]

    Shi D H, Liu H, Zhang X N, Sun J F, Liu Y F, Zhu Z L 2011 Int. J. Quantum. Chem. 111 554Google Scholar

    [24]

    Zhao S T, Li J, Li R, Yin S, Guo H J 2021 Chin. Phys. Lett. 38 043101Google Scholar

    [25]

    Qin Z, Bai T R, Liu L H 2021 Astrophys. J. 917 87Google Scholar

    [26]

    Gutsev G L, Jena P, Bartlett R J 1999 J. Chem. Phys. 110 2928Google Scholar

    [27]

    Brown A, Wasylishen R E 2013 J. Mol. Spectrosc. 292 8Google Scholar

    [28]

    Hirata S, Yanai T, De Jong W A, Nakajima T, Hirao K 2004 J. Chem. Phys. 120 3297Google Scholar

    [29]

    Karton A, Martin J M L 2010 J. Chem. Phys. 133 144102Google Scholar

    [30]

    Ferrante F, Prestianni A, Armata N 2017 Theor. Chem. Acc. 136 3Google Scholar

    [31]

    Koput J 2019 J. Comput. Chem. 40 2522Google Scholar

    [32]

    Yurchenko S N, Williams H, Leyland P C, Lodi L, Tennyson J 2018 Mon. Not. R. Astron. Soc. 479 1401Google Scholar

    [33]

    Sindhan R, Sriramachandran P, Shanmugavel R, Ramaswamy S 2023 New. Astron. 99 101939Google Scholar

    [34]

    Di Rosa M D 2004 Eur. Phys. J. D. 31 395Google Scholar

    [35]

    Kramida A, Ralchenko Y, Reader J. & NIST ASD Team 2022 NIST Atomic Spectra Database (version 5.10) [2023-4-13]

    [36]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M 2023 MOLPRO (version 2010.1) [2023-4-13]

    [37]

    侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰 2022 物理学报 71 213101Google Scholar

    Hou Q Y, Guan H Y, Huang Y L, Chen S L, Yang M, Wan M J 2022 Acta Phys. Sin. 71 213101Google Scholar

    [38]

    邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋 2022 物理学报 71 103101Google Scholar

    Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101Google Scholar

    [39]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [40]

    Dunning Jr T H, Peterson K A, Wilson A K 2001 J. Chem. Phys. 114 9244Google Scholar

    [41]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48Google Scholar

    [42]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [43]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [44]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317Google Scholar

    [45]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [46]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

    [47]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett 110 143001Google Scholar

  • 图 1  AlH分子10个Λ-S态的势能曲线

    Figure 1.  Potential energy curves of 10 Λ-S states of the AlH molecule.

    图 2  AlH分子26个Ω态的势能曲线

    Figure 2.  Potential energy curves of 26 Ω states of the AlH molecule.

    图 3  AlH 分子 6 对跃迁的跃迁偶极矩曲线

    Figure 3.  Curves of the transition dipole moments versus internuclear separation of six-pair states of the AlH molecule.

    图 4  利用A1Π1(υ'= 0和1, J' = 1, +) ↔$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ''= 0—3, J'' = 1, –)跃迁进行激光冷却AlH分子的方案. 红色实线表示激光驱动A1Π1(υ' = 0和1, +)←$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0—3, –)跃迁Q(1)支的激光波长(λυ'υ'')

    Figure 4.  The proposed laser cooling scheme for the AlH using A1Π1 (υ'= 0 and 1, J' = 1, +) ↔$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ''= 0–3, J'' = 1, –) transition. The red solid line indicate the wavelength (λυ'υ'') at which the laser drives the Q(1) branch of the A1Π1 (υ' = 0 and 1, +) ←$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0–3, –) transition.

    图 5  A1Π1态的辐射寿命随转动量子数J'的分布

    Figure 5.  Distributions of the radiative lifetime varying as the J' of the A1Π1 state.

    表 1  AlH分子前3个离解极限产生的10个Λ-S态的离解关系

    Table 1.  Dissociation relationships of the 10 Λ-S states generated from the first three dissociation asymptotes of the AlH molecule.

    离解极限Λ-S态能级/cm–1
    本文实验[35]理论[20]理论[24]理论[25]
    Al(3s23p 2Pu) + H(1s 2Sg)X1Σ+, a3Π, A1Π, 13Σ+00000
    Al(3s24s 2Sg) + H(1s 2Sg)C1Σ+, 23Σ+25217.3025291.73a)25082.402553325306.42
    Al(3s3p2 4Pg) + H(1s 2Sg)b3Σ, 15Σ, 23Π, 15Π28790.8029020.69b)28151.60
    a) E(Al, 3s24s 2Sg) = E(Al, 3s24s 2S1/2) – E(Al, 3s23p 2P3/2)/2;
    b) E(Al, 3s3p2 4Pg) = [E(Al, 3s3p2 4P1/2) +E(Al, 3s3p2 4P3/2) +E(Al, 3s3p2 4P5/2)]/3 –E(Al, 3s23p 2P3/2)/2.
    DownLoad: CSV

    表 2  AlH分子X1Σ+态的光谱常数

    Table 2.  Spectroscopic parameters of the X1Σ+ state of AlH molecule.

    来源Te/cm–1Re/nmωe/cm–1ωexe/cm–1Be/cm–1102αe/cm–1De/eV
    icMRCI + Q/AV6 Z*a)00.165141667.6725.01196.3057015.70973.2353
    icMRCI + Q/56a)00.165101668.6025.03536.3087115.77993.2400
    ∆56a)0–0.000040.930.02340.003010.07020.0047
    icMRCI + Q/56+CVa)00.164211686.5523.85776.3524814.65273.1860
    ∆CVa)0–0.0008917.95–1.17760.04377–1.1272–0.054
    icMRCI + Q/56+SRa)00.165121665.8424.99796.3075315.75683.2365
    ∆SRa)00.00002–2.76–0.0374–0.00118–0.0231–0.0035
    icMRCI + Q/56 + CV + SRa)00.164231683.8623.82976.3518414.75843.1825
    ∆CV+SRa)0–0.0008715.26–1.20560.04313–1.0215–0.0575
    实验[8]00.164741682.4429.10606.393718.6853.16 ± 0.01b)
    实验[9]00.164541682.3829.05106.3937818.7053
    实验[10]01682.3729.04666.3937718.7044
    实验[14]01682.3729.05116.3937918.7056
    实验[15]00.164741682.3729.05116.3937918.7056
    实验[18]01682.5629.96.390718.58
    理论[6]00.16350
    理论[22]00.165331679.6028.96.3518.253.1699
    理论[23]00.165101683.3729.37866.366318.8763.1775
    理论[24]00.165401675276.35
    理论[25]00.165001665.9326.996.365018.613.198
    理论[26]00.1639916906.453.19
    理论[27]00.164651685.5129.37866.40118.4
    理论[28]00.164901690306.37818.63.1738
    理论[29]00.164541682.1428.6118.636
    理论[30]00.164701683.3525.806.391619.18
    理论[31]00.164546.31938c)3.1821
    a)本文的结果; b)文献[13]中的值; c) B0值.
    DownLoad: CSV

    表 3  AlH分子a3Π, A1Π, b3Σ, 23Σ+, 23Π, C1Σ+和15Σ态的光谱常数

    Table 3.  Spectroscopic parameters of the a3Π, A1Π, b3Σ, 23Σ+, 23Π, C1Σ+, and 15Σ states of AlH.

    Λ-S态来源Te/cm–1Re/nmωe/cm–1ωexe/cm–1Be/cm–1102 αe/cm–1De/eV
    a3Π本文a)15445.970.158951800.7331.49546.653232.070761.2525
    实验[20]xb)6.7520c)
    理论[6]15702.280.1585
    理论[20]15223.3d)6.648c)
    理论[24]151150.16002012946.79
    理论[26]0.1586818116.89
    A1Π本文a)23746.940.166181415.29186.7506.87425136.4530.2384
    实验[14]23638.331416.50166.866.3864273.25410.24±0.01e)
    实验[15]23638.330.164831416.50166.866.3864273.2540
    实验[17]23763.47f)1082.77f)0f)6.3861173.2282
    理论[6]23959.820.1649
    理论[24]235360.166513701256.34
    理论[25]23529.19
    b3Σ本文a)41859.740.158761741.7238.55376.7222911.38081.5480
    实验[19]414450.1571724642757.075964.3
    实验[20]x+26223.71d)6.7520c)
    理论[6]42165.980.1582
    理论[20]41370.7d)6.602c)
    23Σ+本文a)43694.990.160072683.33503.3416.7803466.25260.8836
    理论[6]43752.710.1565
    23Π本文a)43922.360.216421119.619.705303.703651.403631.2981
    理论[6]44202.150.2144
    C1Σ+势阱一本文a)44744.730.161601575.9091.07276.6925944.03370.7528
    实验[15]44675.370.161311575.34125.56.6680255.8440.7567
    实验[16]44675.370.161311575.34125.56.6680455.8390.7567
    理论[24]439990.157515661007.15
    理论[25]44621.500.1625
    C 1Σ+势阱二本文a)43964.500.36561484.7104.045861.298360.5240530.8517
    理论[6]44629.050.3648
    理论[24]410490.373549161.24
    理论[25]40595.830.3777
    15Σ本文a)53899.460.24733294.56746.15792.8039542.62710.0605
    a) 利用icMRCI + Q/56 + CV + SR理论获得的结果; b) x表示a3Π态相对于X1Σ+态的T0值;
    c) B0值; d) T0值; e) 文献[13]中的值; f) ωexe固定为0, 获得的结果.
    DownLoad: CSV

    表 4  AlH分子26个Ω态的离解关系

    Table 4.  Dissociation relationships of the 26 Ω states of the AlH molecule.

    原子态(Al + H)Ω态能级/cm–1
    本文实验[35]
    Al(3s23p 2P1/2) +
    H(1s 2S1/2)
    0, 0+, 100
    Al(3s23p 2P3/2) +
    H(1s 2S1/2)
    2, 1(2), 0+, 0103.93112.06
    Al(3s24s 2S1/2) +
    H(1s 2S1/2)
    0+, 0, 125281.5825347.76
    Al(3s3p2 4P1/2) +
    H(1s 2S1/2)
    0, 0+, 128760.8629020.41
    Al(3s3p2 4P3/2) +
    H(1s 2S1/2)
    2, 1(2), 0+, 028812.6629066.96
    Al(3s3p2 4P5/2) +
    H(1s 2S1/2)
    3, 2(2), 1(2), 0+, 028893.1629142.78
    DownLoad: CSV

    表 5  利用icMRCI + Q/56 + CV + SR + SOC理论获得的19个Ω态的光谱常数

    Table 5.  Spectroscopic parameters obtained by the icMRCI + Q/56 + CV + SR + SOC calculations for the 19 Ω states.

    Ω态Te/cm–1Re/nmωe/cm–1ωexe/cm–1Be/cm–1102αe/cm–1De/eVRe附近主要的Λ-S态/%
    $ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $00.164231683.8323.82326.3515214.73603.1732X1Σ+ (100.00)
    ${\text{a} }{}^{3}{ { {\Pi } }_{ { {0}^- } }}$15405.800.158951778.2721.87276.649642.436021.2474a3Π (100.00)
    $ {\text{a}}{}^{3}{{{\Pi }}_{{{0}^ + }}} $15405.930.158951778.6622.06506.661041.342721.2618a3Π (100.00)
    a3Π115445.970.158951777.3621.43486.633863.901311.2424a3Π (100.00)
    a3Π215486.790.158951778.7122.09806.654971.914661.2523a3Π (100.00)
    A1Π123747.160.166181414.96186.4986.86983135.8910.2660a)A1Π (100.00)
    (3) 0+第一势阱41859.960.158761735.0513.17106.7169821.32991.1105b3Σ (100.00)
    (3) 0+第二势阱43881.100.216431114.603.714410.859923Π (100.00)
    (3) 0+第三势阱43964.940.36554484.3193.567001.298490.568790.8517C1Σ+ (100.00)
    (3) 141859.960.158760.0258b3Σ (100.00)
    (4) 1第一势阱42188.070.167872943.155.962621.232013Σ+ (99.96), b3Σ (0.04)
    (4) 1第二势阱43922.580.216421114.523.716291.016923Π (100.00)
    (3) 0第一势阱43694.980.160072685.046.793881.045223Σ+ (100.00)
    (3) 0第二势阱43880.880.216431118.659.058653.707902.612541.022123Π (100.00)
    (4) 046017.030.185613275.38937.5285.1502446.74981.029123Π (99.92), 23Σ+(0.08)
    (4) 0+第一势阱44744.950.161591562.416.669561.1870C1Σ+ (100.00)
    (4) 0+第二势阱45035.320.19346674.726161.96754.90192407.501.156423Π (97.66), b3Σ(2.34)
    (4) 0+第三势阱47498.040.263771589.912.259630.8510C1Σ+ (100.00)
    (5) 1第一势阱43694.980.160072768.867.392041.322723Σ+(100.00)
    (5) 1第二势阱45041.460.193641.1556b3Σ(99.42), 23Π (0.58)
    (5) 0+46034.370.185602898.991038.215.1732285.94441.036023Π (99.98), b3Σ(0.02)
    (6) 146021.850.185773308.86970.7125.1684553.55901.037523Σ+(99.96), 23Π (0.04)
    23Π243964.280.216401119.629.702723.704111.405471.289223Π (100.00)
    ${1}{}^{5}{ {\Sigma } }_{ { {0}^- } }^-$53899.240.24737292.19340.92542.7278022.16160.056815Σ (99.99), 23Σ+ (0.01)
    $1^{5} \Sigma_{1}^-$53899.460.24734294.95748.30392.8588257.29870.066115Σ (100.00)
    ${1}{}^{5}{ {\Sigma } }_{2}^-$53899.680.24733294.67346.86412.8313349.97710.066115Σ (100.00)
    a) 势阱的深度.
    DownLoad: CSV

    表 6  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(0, 0)和(0, 1)带Q支的振转跃迁

    Table 6.  Rovibrational transitions of the Q branch for the (0, 0) and (0, 1) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $system.

    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(0, 0)实验[17](0, 1)实验[17]
    123529.3723470.341.612×1070.99060.1310425.3021881.5721845.639.618×1040.00599.034×10–4457.33
    223528.0423469.191.609×1070.99040.2179425.3321880.9721845.229.846×1040.00610.0015457.34
    323526.0223467.451.605×1070.99010.3043425.3621880.0421844.581.020×1050.00630.0022457.36
    423523.3123465.101.599×1070.98970.3898425.4121878.7821843.701.067×1050.00660.0030457.39
    523519.8623462.121.591×1070.98920.4743425.4821877.1421842.551.129×1050.00700.0039457.42
    623515.6523458.471.581×1070.98860.5574425.5521875.1021841.101.205×1050.00750.0049457.47
    723510.6323454.121.570×1070.98780.6388425.6421872.6121839.301.299×1050.00820.0061457.52
    823504.7523449.001.557×1070.98690.7183425.7521869.6221837.111.411×1050.00890.0075457.58
    923497.9523443.071.542×1070.98570.7956425.8721866.0621834.461.544×1050.00990.0092457.66
    1023490.1523436.261.525×1070.98440.8702426.0121861.8721831.291.701×1050.01100.0112457.74
    1123481.2623428.481.506×1070.98270.9417426.1721856.9421827.521.885×1050.01230.0136457.85
    1223471.2023419.661.484×1070.98081.010426.3621851.1921823.052.100×1050.01390.0165457.97
    1323459.8323409.671.460×1070.97841.074426.5621844.4921817.772.350×1050.01580.0199458.11
    1423447.0323398.401.433×1070.97571.133426.8021836.7121811.572.640×1050.01800.0241458.27
    1523432.6423385.701.402×1070.97231.187427.0621827.6821804.292.975×1050.02060.0290458.46
    1623416.4623371.411.368×1070.96831.234427.3521817.2121795.753.362×1050.02380.0349458.68
    1723398.2623355.311.329×1070.96341.274427.6921805.0721785.773.807×1050.02760.0420458.94
    DownLoad: CSV

    表 7  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(0, 2)和(0, 3)带Q支的振转跃迁

    Table 7.  Rovibrational transitions of the Q branch for the (0, 2) and (0, 3) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $ system.

    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(0, 2)实验[17](0,3)
    120290.3720276.855.595×1040.00346.113×10–4493.2018753.828.717×1025.355×10–51.115×10–5533.60
    220290.4720277.155.637×1040.00350.0010493.1918754.629.044×1025.565×10–51.927×10–5533.58
    320290.6120277.595.700×1040.00350.0015493.1918755.799.552×1025.893×10–52.850×10–5533.55
    420290.7620278.155.787×1040.00360.0019493.1918757.331.026×1036.355×10–53.936×10–5533.50
    520290.8920278.805.898×1040.00370.0024493.1818759.191.121×1036.972×10–55.254×10–5533.45
    620290.9720279.506.037×1040.00380.0029493.1818761.341.244×1037.777×10–56.888×10–5533.39
    720290.9520280.216.206×1040.00390.0034493.1818763.741.401×1038.811×10–58.946×10–5533.32
    820290.7820280.886.411×1040.00410.0040493.1918766.331.599×1031.013×10–41.157×10–4533.25
    920290.3920281.456.655×1040.00430.0046493.1918769.051.849×1031.182×10–41.495×10–4533.17
    1020289.7120281.856.945×1040.00450.0053493.2118771.812.165×1031.397×10–41.934×10–4533.09
    1120288.6520282.007.289×1040.00480.0061493.2418774.532.564×1031.673×10–42.508×10–4533.02
    1220287.1120281.807.697×1040.00510.0070493.2718777.103.071×1032.029×10–43.264×10–4532.94
    1320284.9620281.158.181×1040.00550.0080493.3318779.413.719×1032.492×10–44.268×10–4532.88
    1420282.0820279.918.759×1040.00600.0093493.4018781.314.553×1033.101×10–45.612×10–4532.82
    1520278.2820277.949.450×1040.00660.0107493.4918782.635.638×1033.910×10–47.427×10–4532.79
    1620273.3920275.061.028×1050.00730.0124493.6118783.197.065×1035.002×10–49.907×10–4532.77
    1720267.1520271.071.129×1050.00820.0144493.7618782.728.970×1036.502×10–40.0013532.78
    DownLoad: CSV

    表 8  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(1, 0)和(1, 1)带Q支的振转跃迁

    Table 8.  Rovibrational transitions of the Q branch for the (1, 0) and (1, 1) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $ system.

    $\tilde{v} $/cm–1Aυ'J'υ''J
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(1, 0)实验[17](1, 1)实验[17]
    124590.5324551.641.828×1060.16700.0136406.9522942.7422926.948.154×1060.74490.0697436.18
    224586.0324547.551.837×1060.16870.0228407.0222938.9622923.598.079×1060.74190.1151436.25
    324579.2224541.371.852×1060.17140.0322407.1422933.2422918.507.967×1060.73730.1590436.36
    424570.0324533.041.871×1060.17500.0418407.2922925.5022911.647.815×1060.73100.2006436.51
    524558.3624522.501.894×1060.17970.0518407.4822915.6422902.937.623×1060.72300.2394436.69
    624544.0824509.561.921×1060.18540.0622407.7222903.5322892.197.387×1060.71300.2745436.92
    724527.0324494.161.951×1060.19240.0729408.0022889.0122879.357.106×1060.70090.3050437.20
    DownLoad: CSV

    表 9  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(1, 2)和(1, 3)带Q支的振转跃迁

    Table 9.  Rovibrational transitions of the Q branch for the (1, 2) and (1, 3) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $system.

    $\tilde{v} $/cm–1Aυ'J'υ''J ''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(1, 2)实验[17](1, 3)实验[17]
    121351.5421358.166.384×1050.05830.0063468.6819814.9919843.912.767×1050.02530.0032505.03
    221348.4721355.526.437×1050.05910.0106468.7519812.6119841.972.790×1050.02560.0053505.09
    321343.8121351.526.514×1050.06030.0150468.8519808.9919839.032.825×1050.02610.0076505.18
    421337.4821346.096.615×1050.06190.0196468.9919804.0519835.012.872×1050.02690.0099505.31
    521329.3921339.176.739×1050.06390.0244469.1719797.6919829.852.931×1050.02780.0123505.47
    621319.4021330.596.881×1050.06640.0295469.3919789.7819823.383.003×1050.02900.0149505.67
    721307.3521320.257.037×1050.06940.0349469.6619780.1419815.513.088×1050.03050.0178505.92
    DownLoad: CSV

    表 10  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(1, 4)和(1, 5)带Q支的振转跃迁

    Table 10.  Rovibrational transitions of the Q branch for the (1, 4) and (1, 5) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $ system.

    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(1, 4)实验[17](1,5)
    118331.3918382.883.727×1040.00344.988×10–4545.9016899.391.003×1049.167×10–41.580×10–4592.16
    218329.6918381.643.815×1040.00358.512×10–4545.9516898.361.031×1049.469×10–42.707×10–4592.19
    318327.0918379.733.951×1040.00370.0012546.0316896.761.074×1049.944×10–43.950×10–4592.25
    418323.5118377.094.140×1040.00390.0017546.1416894.521.135×1040.00115.368×10–4592.33
    518318.8418373.664.388×1040.00420.0022546.2716891.531.217×1040.00127.035×10–4592.43
    618312.9718369.254.703×1040.00450.0027546.4516887.651.324×1040.00139.047×10–4592.57
    718305.7118363.805.096×1040.00500.0034546.6716882.731.461×1040.00140.0012592.74
    DownLoad: CSV

    表 11  $ {{\text{a}}^{3}}{{{\Pi }}_{{{0}^ + }}} $(υ' = 0—3, J' = 0, +) –$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0—4, J'' = 1, –)系统的振转跃迁

    Table 11.  Rovibrational transitions of the $ {{\text{a}}^{3}}{{{\Pi }}_{{{0}^ + }}} $(υ' = 0—3, J' = 0, +) –$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0—4, J'' = 1, –) system.

    (υ', υ'')$\tilde{v} $
    /cm–1
    Aυ'J'υ′′J''
    /s–1
    Rυ'J'υ′′J''gfυ'J'υ′′J''λυ'J'υ′′J''
    /nm
    (υ', υ'')$\tilde{v} $
    /cm–1
    Aυ'J'υ′′J''
    /s–1
    Rυ'J'υ′′J''gfυ'J'υ′′J''λυ'J'υ′′J''
    /nm
    (0, 0)15439.351.42330.48158.952×10–9648.16(1, 0)17153.571.11180.26665.665×10–9583.38
    (0, 1)13791.561.37150.46391.081×10–8725.60(1, 1)15505.780.32720.07852.040×10–9645.38
    (0, 2)12200.350.14270.04831.437×10–9820.23(1, 2)13914.572.36360.56681.830×10–8719.18
    (0, 3)10663.800.01700.00572.237×10–10938.42(1, 3)12378.030.30470.07312.982×10–9808.46
    (0, 4)9180.200.00175.644×10–42.968×10–111090.08(1, 4)10894.420.05520.01326.968×10–10918.55
    (2, 0)18760.320.15340.02176.534×10–10533.42(3, 0)20242.839.974×10–47.907×10–53.649×10–12494.35
    (2, 1)17112.533.06260.43281.568×10–8584.78(3, 1)18595.040.35180.02791.526×10–9538.16
    (2, 2)15521.320.01240.00187.738×10–11644.73(3, 2)17003.845.95240.47193.086×10–8588.52
    (2, 3)13984.783.35090.47362.569×10–8715.57(3, 3)15467.290.85620.06795.365×10–9646.99
    (2, 4)12501.170.36620.05183.513×10–9800.49(3, 4)13983.685.00150.39653.835×10–8715.63
    DownLoad: CSV

    表 12  a3Π1(υ' = 0—3, J' = 1, +) –$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0 —4, J'' = 1, –)系统的振转跃迁

    Table 12.  Rovibrational transitions of the a3Π1(υ' = 0—3, J' = 1, +) –$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0—4, J'' = 1, –) system.

    (υ', υ'')$\tilde{v} $
    /cm–1
    Aυ'J'υ′′J''
    /s–1
    Rυ'J'υ′′J''gfυ'J'υ′′J''λυ'J'υ′′J''
    /nm
    (υ', υ'')$\tilde{v} $
    /cm–1
    Aυ'J'υ′′J''
    /s–1
    Rυ'J'υ′′J''gfυ'J'υ′′J''λυ'J'υ′′J''
    /nm
    (0, 0)8076.521.07620.94667.420×10–81239.04(1, 0)9138.010.56960.06653.068×10–81095.11
    (0, 1)6362.810.00720.04937.977×10–101572.75(1, 1)7424.290.27400.84812.236×10–81347.89
    (0, 2)4756.623.940×10–40.00387.832×10–112103.83(1, 2)5818.100.01420.07481.887×10–91720.00
    (0, 3)3274.751.009×10–52.791×10–44.233×10–123055.84(1, 3)4336.240.00200.00964.722×10–102307.79
    (0, 4)1943.341.047×10–62.303×10–51.246×10–125149.44(1, 4)3004.821.304×10–48.994×10–46.496×10–113330.35
    (2, 0)18806.495.770×10–49.414×10–67.337×10–12532.11(3, 0)20288.570.00631.050×10–46.836×10–11493.24
    (2, 1)17158.706.53530.10669.983×10–8583.21(3, 1)18640.770.06220.00108.047×10–10536.84
    (2, 2)15567.4949.0090.79969.095×10–7642.82(3, 2)17049.576.79390.11411.051×10–7586.94
    (2, 3)14030.954.64910.07591.062×10–7713.22(3, 3)15513.0247.9920.80588.969×10–7645.08
    (2, 4)12547.340.97900.01602.797×10–8797.55(3, 4)14029.423.20350.05387.320×10–8713.29
    DownLoad: CSV
  • [1]

    Herbig G H 1956 Publ. Astron. Soc. Pac. 68 204Google Scholar

    [2]

    Kamiński T, Wong K T, Schmidt M R, et al. 2016 Astron. Astrophys. 592 A42Google Scholar

    [3]

    Pavlenko Y V, Tennyson J, Yurchenko S N, et al. 2022 Mon. Not. R. Astron. Soc. 516 5655Google Scholar

    [4]

    Karthikeyan B, Rajamanickam N, Bagare S P 2010 Sol. Phys. 264 279Google Scholar

    [5]

    Halfen D T, Ziurys L M 2014 Astrophys. J. 791 65Google Scholar

    [6]

    Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018Google Scholar

    [7]

    Basquin O H 1901 Astrophys. J. 14 1Google Scholar

    [8]

    Deutsch J L, Neil W S, Ramsay D A 1987 J. Mol. Spectrosc. 125 115Google Scholar

    [9]

    White J B, Dulick M, Bernath P F 1993 J. Chem. Phys. 99 8371Google Scholar

    [10]

    Ito F, Nakanaga T, Takeo H, Jones H 1994 J. Mol. Spectrosc. 164 379Google Scholar

    [11]

    Rice J K, Pasternack L, Nelson H H 1992 Chem. Phys. Lett. 189 43Google Scholar

    [12]

    Ram R S, Bernath P F 1996 Appl. Optics. 35 2879Google Scholar

    [13]

    Baltayan P, Nedelec O 1979 J. Chem. Phys. 70 2399Google Scholar

    [14]

    Szajna W, Zachwieja M 2009 Eur. Phys. J. D 55 549Google Scholar

    [15]

    Szajna W, Zachwieja M, Hakalla R, Kępa R 2011 Acta Phys. Pol. A. 120 417Google Scholar

    [16]

    Szajna W, Zachwieja M 2010 J. Mol. Spectrosc. 260 130Google Scholar

    [17]

    Szajna W, Kȩpa R, Para A, Piotrowska I, Ryzner S, Field R W, Heays A N, Hakalla R 2023 J. Mol. Spectrosc. 391 111735Google Scholar

    [18]

    Zhang Y, Stuke M 1988 Chem. Phys. Lett. 149 310Google Scholar

    [19]

    Zhu Y F, Shehadeh R, Grant E R 1992 J. Chem. Phys. 97 883Google Scholar

    [20]

    Tao C, Tan X F, Dagdigian P J, Alexander M H 2003 J. Chem. Phys. 118 10477Google Scholar

    [21]

    Szajna W, Hakalla R, Kolek P, Zachwieja M 2017 J. Quant. Spectrosc. Ra. 187 167Google Scholar

    [22]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 99 1914Google Scholar

    [23]

    Shi D H, Liu H, Zhang X N, Sun J F, Liu Y F, Zhu Z L 2011 Int. J. Quantum. Chem. 111 554Google Scholar

    [24]

    Zhao S T, Li J, Li R, Yin S, Guo H J 2021 Chin. Phys. Lett. 38 043101Google Scholar

    [25]

    Qin Z, Bai T R, Liu L H 2021 Astrophys. J. 917 87Google Scholar

    [26]

    Gutsev G L, Jena P, Bartlett R J 1999 J. Chem. Phys. 110 2928Google Scholar

    [27]

    Brown A, Wasylishen R E 2013 J. Mol. Spectrosc. 292 8Google Scholar

    [28]

    Hirata S, Yanai T, De Jong W A, Nakajima T, Hirao K 2004 J. Chem. Phys. 120 3297Google Scholar

    [29]

    Karton A, Martin J M L 2010 J. Chem. Phys. 133 144102Google Scholar

    [30]

    Ferrante F, Prestianni A, Armata N 2017 Theor. Chem. Acc. 136 3Google Scholar

    [31]

    Koput J 2019 J. Comput. Chem. 40 2522Google Scholar

    [32]

    Yurchenko S N, Williams H, Leyland P C, Lodi L, Tennyson J 2018 Mon. Not. R. Astron. Soc. 479 1401Google Scholar

    [33]

    Sindhan R, Sriramachandran P, Shanmugavel R, Ramaswamy S 2023 New. Astron. 99 101939Google Scholar

    [34]

    Di Rosa M D 2004 Eur. Phys. J. D. 31 395Google Scholar

    [35]

    Kramida A, Ralchenko Y, Reader J. & NIST ASD Team 2022 NIST Atomic Spectra Database (version 5.10) [2023-4-13]

    [36]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M 2023 MOLPRO (version 2010.1) [2023-4-13]

    [37]

    侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰 2022 物理学报 71 213101Google Scholar

    Hou Q Y, Guan H Y, Huang Y L, Chen S L, Yang M, Wan M J 2022 Acta Phys. Sin. 71 213101Google Scholar

    [38]

    邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋 2022 物理学报 71 103101Google Scholar

    Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101Google Scholar

    [39]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [40]

    Dunning Jr T H, Peterson K A, Wilson A K 2001 J. Chem. Phys. 114 9244Google Scholar

    [41]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48Google Scholar

    [42]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [43]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [44]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317Google Scholar

    [45]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [46]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

    [47]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett 110 143001Google Scholar

  • [1] Liu Ming-Jie, Tian Ya-Li, Wang Yu, Li Xiao-Xiao, He Xiao-Hu, Gong Ting, Sun Xiao-Cong, Guo Gu-Qing, Qiu Xuan-Bing, Li Chuan-Liang. Calculation of spectroscopic constants for O-2 containing spin-orbit coupling. Acta Physica Sinica, 2025, 74(2): . doi: 10.7498/aps.74.20241435
    [2] Xing Wei, Li Sheng-Zhou, Zhang Fang, Sun Jin-Feng, Li Wen-Tao, Zhu Zun-Lüe. Theoretical investigation on spectroscopic characteristics of 14 Λ-S and 27 Ω states of OH+ cation. Acta Physica Sinica, 2024, 73(22): 223101. doi: 10.7498/aps.73.20241301
    [3] Xing Wei, Li Sheng–Zhou, Sun Jin–Feng, Li Wen–Tao, Zhu Zun–Lüe, Liu Feng. Theoretical study on spectroscopic properties of 8 Λ-S and 23 Ω states for BH molecule. Acta Physica Sinica, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [4] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [5] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [6] Li Chen-Xi, Guo Ying-Chun, Wang Bing-Bing. Ab initio calculation of the potential curve of B3u- state of O2. Acta Physica Sinica, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [7] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua. Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [8] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao. Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [9] Chen Heng-Jie. Potential energy curves and vibrational levels of ground and excited states of LiAl. Acta Physica Sinica, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [10] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [12] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe. Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [13] Guo Yu-Wei, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang. Investigation on the potential energy curves and spectroscopic properties of the low-lying excited states of BP. Acta Physica Sinica, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [14] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [15] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [16] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [18] Wang Xin-Qiang, Yang Chuan-Lu, Su Tao, Wang Mei-Shan. Analytical potential energy functions and spectroscopic properties of the ground and excited states of BH molecule. Acta Physica Sinica, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [19] Gao Feng, Yang Chuan_Lu, Zhang Xiao_Yan. MRCI potential curves and analytical potential energy functions of the low-lying excited states (1∏,3∏) of ZnHg. Acta Physica Sinica, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
Metrics
  • Abstract views:  3358
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2023
  • Accepted Date:  19 May 2023
  • Available Online:  14 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回