搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

OH+离子14个Λ-S态和27个Ω态光谱性质的理论研究

邢伟 李胜周 张昉 孙金锋 李文涛 朱遵略

引用本文:
Citation:

OH+离子14个Λ-S态和27个Ω态光谱性质的理论研究

邢伟, 李胜周, 张昉, 孙金锋, 李文涛, 朱遵略

Theoretical investigation on spectroscopic characteristics of 14Λ-S and 27Ω states of OH+ cations

Xing Wei, Li Sheng-Zhou, Zhang Fang, Sun Jin-Feng, Li Wen-Tao, Zhu Zun-Lüe
PDF
导出引用
  • 在选择合适的活性空间和基组、考虑各种物理效应(标量相对论效应、核–价电子关联效应、完备基组极限和自旋–轨道耦合效应)的基础上, 本文利用优化的icMRCI+Q方法获得了X3Σ-/a1Δ/b1Σ+/A3Π/c1Π(OH+)←X2Π(OH)精确的电离能、OH+离子14个Λ-S态和相应的27个Ω态势能曲线. 利用全电子icMRCI/cc-pCV5Z + SOC理论获得了6个Ω态[X3Σ0+-, X3Σ1-, (1)2, (2)2, (2)1和(1)0-]之间的跃迁偶极距. 并且本文获得的电离能、光谱和振动–转动跃迁数据与现有的测量值符合得非常好. 本文研究发现: 1) (1)2(υ' = 0-6, J' = 2, +)的辐射寿命随着υ'的增加而逐渐缩短, 辐射宽度随着υ'的增加而逐渐增宽; (1)2(υ' = 0-6, J' = 2, +)- X3Σ1-(υ′′, J′′ = 1, -)自发辐射较弱. 2) (2)2第一势阱(υ' = 0-2, J' = 2, +), (2)1(υ' = 0-9, J' = 1, +)和(1)0-(υ' = 0-8, J' = 0, +)的辐射寿命都是随着υ'的增加而逐渐增长, 辐射宽度都随着υ'的增加而逐渐变窄; (2)2第一势阱(υ' = 0-2, J' = 2, +)-X3Σ1- (υ′′, J′′ = 1, -), (2)1(υ' = 0-9, J' = 1, +)- X3Σ0+- (υ′′, J′′ = 1, -)和(1)0-(υ' = 0-8, J' = 0, +)- X3Σ1-(υ′′, J′′ = 1, -)的自发辐射很强. 3) (2)2第一势阱(υ' = 0-2, +), (2)1(υ' = 0-9, +)和(1)0-(υ' = 0-8, +)的辐射寿命都是随着J'的增加而逐渐增长. 本文数据集可在科学数据银行数据库 https://www.doi.org/10.57760/sciencedb.j00213.00058中访问获取. (数据集私有访问链接https://www.scidb.cn/s/B7buIr)
    Based on the selection of appropriate active space and basis sets, and consideration of various physical effects (scalar relativistic effect, core-valence electron correlation, complete basis set limit and spin-orbit coupling effect), the precise ionization energies of X3Σ-/a1Δ/b1Σ+/A3Π/ c1Π(OH+)←X2Π(OH), as well as the potential energy curves of 14 Λ-S and 27 Ω states of OH+ are obtained by using the optimized icMRCI + Q method. The transition dipole moments between six Ω states[X3Σ0+-, X3Σ1-, (1)2, (2)2, (2)1, and (1)0-] are obtained by using the all electron icMRCI/cc-pCV5Z + SOC theory. The ionization energies, spectroscopic and vibrational-rotational transition data obtained in this paper are in good agreement with the existing measurements. We found that: 1) The radiation lifetimes of (1)2(υ' = 0-6, J' = 2, +) gradually decrease with increasing υ', while the radiation widths correspondingly increase; the spontaneous emissions of (1)2(υ' = 0-6, J' = 2, +)- X3Σ1-(υ′′, J′′ = 1, -) are weak. 2) The radiation lifetimes of (2)21st well(υ' = 0-2, J' = 2, +), (2)1(υ' = 0-9, J' = 1, +), and (1)0-(υ' = 0-8, J' = 0, +) all gradually increase as υ' increases, concurrently, their radiation widths narrow with increasing υ'; the spontaneous emissions of (2)21st well(υ' = 0-2, J' = 2, +)- X3Σ1-(υ′′, J′′ = 1, -), (2)1(υ' = 0-9, J' = 1, +)- (υ′′, J′′ = 1, -), and (1)0-(υ' = 0-8, J' = 0, +)- X3Σ1-(υ′′, J′′ = 1, -) are strong. 3) The radiation lifetimes of (2)21st well(υ' = 0-2, +), (2)1(υ' = 0-9, +), and (1)0-(υ' = 0-8, +) all gradually increase with the increase of J'. The datasets presented in this paper, including the potential energy curves of 14 Λ-S and 27 Ω states, 7 pairs of transition dipole moments between the 6 Ω states [X3Σ0+-, X3Σ1-, (1)2, (2)2, (2)1, (1)0-], and distributions of the radiative lifetime varying as the J' of the (2)21st well(υ' = 0 - 2, +), (2)1(υ' = 0-9, +), and (1)0-(υ' = 0-8, +) states, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00058. (Data private access link https://www.scidb.cn/s/B7buIr)
  • [1]

    Wyrowski F, Menten K M, Güsten R, Belloche A 2010 Astron. Astrophys. 518 A26

    [2]

    Gupta H, Rimmer P, Pearson J C, Yu S, Herbst E, Harada N, Bergin E A, Neufeld D A 2010 Astron. Astrophys. 521 L47

    [3]

    Van der Tak F F S, Nagy Z, Ossenkopf V, Makai Z, Black J H, Faure A, Gerin M, Bergin E A 2013 Astron. Astrophys. 560 A95

    [4]

    Barlow M J, Swinyard B M, Owen P J, Cernicharo J, Gomez H L, Ivison R J, Krause O, Lim T L, Matsuura M, Miller S, Olofsson G, Polehampton E T 2013 Science 342 1343

    [5]

    Aleman I, Ueta T, Ladjal D, Exter K M, Kastner J H, Montez Jr R, Tielens A G G M, Chu Y -H, Izumiura H, McDonald I, Sahai R, Siódmiak N, Szczerba R, van Hoof P A M, Villaver E, Vlemmings W, Wittkowski M, Zijlstra A A 2014 Astron. Astrophys. 566 A79

    [6]

    Zhao D, Galazutdinov G A, Linnartz H, Krełowski J 2015 Astrophys. J. Lett. 805 L12

    [7]

    Rodebush W H, Wahl M H 1933 J. Chem. Phys. 1 696

    [8]

    Katsumata S, Lloyd D R 1977 Chem. Phys. Lett. 45 519

    [9]

    Van Lonkhuyzen H, De Lange C A 1984 Mol. Phys. 51 551

    [10]

    Wiedmann R T, Tonkyn R G, White M G, Wang K, McKoy V 1992 J. Chem. Phys. 97 768

    [11]

    Cutler J N, He Z X, Samson J A R 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4577

    [12]

    Barr J D, De Fanis A, Dyke J M, Gamblin S D, Hooper N, Morris A, Stranges S, West J B, Wright T G 1999 J. Chem. Phys. 110 345

    [13]

    Garcia G A, Tang X F, Gil J F, Nahon L, Ward M, Batut S, Fittschen C, Taatjes C A, Osborn D L, Loison J C 2015 J. Chem. Phys. 142 164201

    [14]

    Helm H, Cosby P C, Huestis D L 1984 Phys. Rev. A 30 851

    [15]

    Levin J, Hechtfischer U, Knoll L, Lange M, Saathoff G, Wester R, Wolf A, Schwalm D, Zajfman D 2000 Hyperfine Interact. 127 267

    [16]

    Hechtfischer U, Levin J, Lange M, Knoll L, Schwalm D, Wester R, Wolf A, Zajfman D 2019 J. Chem. Phys. 151 044303

    [17]

    Curtis L J, Erman P 1977 J. Opt. Soc. Am. 67 1218

    [18]

    Möhlmann G R, Bhutani K K, De Heer F J, Tsurubuchi S 1978 Chem. Phys. 31 273

    [19]

    Bekooy J P, Verhoeve P, Meerts W L, Dymanus A 1985 J. Chem. Phys. 82 3868

    [20]

    Gruebele M H W, Müller R P, Saykally R J 1986 J. Chem. Phys. 84 2489

    [21]

    Varberg T D, Evenson K M, Brown J M 1994 J. Chem. Phys. 100 2487

    [22]

    Crofton M W, Altman R S, Jagod M F, Oka T 1985 J. Phys. Chem. 89 3614

    [23]

    Rehfuss B D, Jagod M F, Xu L W, Oka T 1992 J. Mol. Spectrosc. 151 59

    [24]

    Markus C R, Hodges J N, Perry A J, Kocheril G S, Müller H S P, McCall B J 2016 Astrophys. J. 817 138

    [25]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215

    [26]

    Rodgers D J, Sarre P J 1988 Chem. Phys. Lett. 143 235

    [27]

    Rodgers D J, Batey A D, Sarre P J 2007 Mol. Phys. 105 849

    [28]

    Merer A J, Malm D N, Martin R W, Horani M, Rostas J 1975 Can. J. Phys. 53 251

    [29]

    Hodges J N, Bernath P F 2017 Astrophys. J. 840 81

    [30]

    Hodges J N, Bittner D M, Bernath P F 2018 Astrophys. J. 855 21

    [31]

    Meyer W 1974 Theoret. Chim. Acta 35 277

    [32]

    Hirst D M, Guest M F 1983 Mol. Phys. 49 1461

    [33]

    Saxon R P, Liu B 1986 J. Chem. Phys. 85 2099

    [34]

    de Vivie R, Marian C M, Peyerimhoff S D 1987 Chem. Phys. 112 349

    [35]

    Merchán M, Malmqvist P Å, Roos B O 1991 Theoret. Chim. Acta 79 81

    [36]

    Yarkony D R 1993 J. Phys. Chem. 97 111

    [37]

    Li X, Paldus J 2000 J. Mol. Struct. (Theochem) 527 165

    [38]

    Spirko J A, Mallis J T, Hickman A P 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2395

    [39]

    Gómez-Carrasco S, Godard B, Lique F, Bulut N, Kłos J, Roncero O, Aguado A, Aoiz F J, Castillo J F, Goicoechea J R, Etxaluze M, Cernicharo J 2014 Astrophys. J. 794 33

    [40]

    Xavier F G D, Martínez-González M, Varandas A J C 2018 Chem. Phys. Lett. 691 421

    [41]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559

    [42]

    MOLPRO, version 2010.1, a package of ab initio programs, Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M http://www.molpro.net [2024-9-7]

    [43]

    Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101(in Chinese) [朱宇豪, 李瑞 2024 物理学报 73 053101]

    [44]

    Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101 (in Chinese) [邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋 2022 物理学报 71 103101]

    [45]

    Xing W, Li S Z, Sun J F, Cao X, Zhu Z L, Li W T, Li Y Y, Bai C X 2023 Acta Phys. Sin. 72 163101 (in Chinese) [邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭 2023 物理学报 72 163101]

    [46]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [47]

    Wilson A K, van Mourik T, Dunning Jr T H 1996 J. Mol. Struct. (Theochem) 388 339

    [48]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572

    [49]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [50]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317

    [51]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [52]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167

  • [1] 邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭. AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究. 物理学报, doi: 10.7498/aps.72.20230615
    [2] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, doi: 10.7498/aps.71.20220697
    [3] 孙海明. Bi2Te3(111)和Al2O3(0001)衬底对Bi(111)双原子层的电子结构及拓扑性质的影响. 物理学报, doi: 10.7498/aps.71.20220060
    [4] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋. 物理学报, doi: 10.7498/aps.71.20220751
    [5] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 物理学报, doi: 10.7498/aps.71.20220038
    [6] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, doi: 10.7498/aps.70.20210450
    [7] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究. 物理学报, doi: 10.7498/aps.67.20172409
    [8] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, doi: 10.7498/aps.65.063102
    [9] 李瑞, 张晓美, 李奇楠, 罗旺, 金明星, 徐海峰, 闫冰. SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究. 物理学报, doi: 10.7498/aps.63.113102
    [10] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, doi: 10.7498/aps.63.083102
    [11] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, doi: 10.7498/aps.62.163103
    [12] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, doi: 10.7498/aps.62.113102
    [13] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, doi: 10.7498/aps.62.083301
    [14] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, doi: 10.7498/aps.62.233302
    [15] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, doi: 10.7498/aps.62.203104
    [16] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, doi: 10.7498/aps.62.193301
    [17] 于坤, 张晓美, 刘玉芳. 从头计算研究BCl+基态和激发态的势能曲线和光谱性质. 物理学报, doi: 10.7498/aps.62.063301
    [18] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, doi: 10.7498/aps.58.6873
    [19] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, doi: 10.7498/aps.56.4420
    [20] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究. 物理学报, doi: 10.7498/aps.52.3142
计量
  • 文章访问数:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-18

/

返回文章
返回