Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of neutron irradiation-induced recrystallization of tungsten

Zhang Guo-Shuai Yin Chao Wang Zhao-Fan Chen Ze Mao Shi-Feng Ye Min-You

Citation:

Simulation of neutron irradiation-induced recrystallization of tungsten

Zhang Guo-Shuai, Yin Chao, Wang Zhao-Fan, Chen Ze, Mao Shi-Feng, Ye Min-You
PDF
HTML
Get Citation
  • Tungsten is the candidate for divertor target material in future fusion reactors. The tungsten divertor target is expected to long serve in a harsh environment of high temperature and high-energy neutron irradiation. This can lead to neutron irradiation-induced recrystallization of tungsten, thereby increasing the possibility of intergranular brittle failure and compromising the safe operation of the divertor. Thus, clarifying the mechanism of neutron irradiation-induced tungsten recrystallization is important. However, the current model, which only considers the irradiation-enhanced effect on recrystallization driving force, underestimates the irradiation effect on recrystallization compared with the results observed in recent high-temperature neutron irradiation experiments in the HFIR reactor. It indicates that other irradiation effects can also influence the recrystallization process.In this study, we introduce the irradiation-enhanced grain boundary migration factor (R) into the established irradiation-induced recrystallization kinetic model, on the assumption that the grain boundary migration velocity is proportional to the self-diffusion coefficient. The simulation results show that after considering both irradiation-enhanced recrystallization driving force and grain boundary migration effect, the calculated half-recrystallization time (${t}_{{X}\text{}=\text{}0.5}$) at 850 ℃ from the model matches the one obtained in the neutron irradiation experiment in the HFIR reactor. This result indicates that the irradiation-enhanced grain boundary migration effect is one of the important factors affecting irradiation-induced recrystallization. In addition, the difference between irradiated and unirradiated tX=0.5 decreases with temperature increasing. This phenomenon is due to the fact that as the temperature increases, the contribution of irradiation defects to the driving force for recrystallization decreases owing to the irradiation defect recombination. Moreover, the increase of thermal activation diffusion coefficient is more significant than the increase of the irradiation-enhanced diffusion coefficient. These findings suggest that the thermal activation effect eventually dominates the recrystallization process over the irradiation effect as temperature increases.
      Corresponding author: Yin Chao, chaoyin@ustc.edu.cn ; Ye Min-You, yemy@ustc.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U2267208), the China Postdoctoral Science Foundation (Grant No. 2021M703113), the Chinese Academy of Sciences Taiwan Young Talent Program, China (Grant No. 2021TWGB0001), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2021-026), the Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences, China (Grant No. 2022HSC-CIP010), and the Fundamental Research Funds for the Central Universities of China (Grant No. WK2140000015).
    [1]

    Philipps V 2011 J. Nucl. Mater. 415 S2Google Scholar

    [2]

    Rieth M, Dudarev S L, Gonzalez de Vicente S M, et al. 2013 J. Nucl. Mater. 432 482Google Scholar

    [3]

    Norajitra P, Abdel-Khalik S I, Giancarli L M, Ihli T, Janeschitz G, Malang S, Mazul I V, Sardain P 2008 Fusion Eng. Des. 83 893Google Scholar

    [4]

    Abernethy R G 2017 J. Mater. Sci. Technol. 33 388Google Scholar

    [5]

    Coenen J W, Antusch S, Aumann M, et al. 2016 Phys. Scr. T 2016 014002Google Scholar

    [6]

    Hu X, Koyanagi T, Fukuda M, Katoh Y, Snead L L, Wirth B D 2016 J. Nucl. Mater. 480 235Google Scholar

    [7]

    Lopez A A 2015 Ph. D. Dissertation (Copenhagen: Technical University of Denmark)

    [8]

    Alfonso A, Jensen D J, Luo G N, Pantleon W 2014 J. Nucl. Mater. 455 591Google Scholar

    [9]

    Kang W A, Dr A, Xiang Z, Lla B, Xz B, Ywab C 2021 Mater. Sci. Eng. A 806 140828Google Scholar

    [10]

    Budaev V P, Martynenko Y V, Karpov A V, Belova N E, Zhitlukhin A M 2015 J. Nucl. Mater. 463 237Google Scholar

    [11]

    Bonnekoh C, Reiser J, Hartmaier A, Bonk S, Hoffmann A, Rieth M 2020 J. Mater. Sci. 55 12314Google Scholar

    [12]

    Ciucani U M, Thum A, Devos C, Pantleon W 2019 Nucl. Mater. Energy 20 100701Google Scholar

    [13]

    Gietl H, Koyanagi T, Hu X, Fukuda M, Hasegawa A, Katoh Y 2022 J. Alloys Compd. 901 163419Google Scholar

    [14]

    Duerrschnabel M, Klimenkov M, Jaentsch U, Rieth M, Schneider H C, Terentyev D 2021 Sci. Rep. 11 7572Google Scholar

    [15]

    Klimenkov M, Jaentsch U, Rieth M, Schneider H C, Armstrong D E J, Gibson J, Roberts S G 2016 Nucl. Mater. Energy 9 480Google Scholar

    [16]

    Fukuda M, Kumar N A P K, Koyanagi T, Garrison L M, Snead L L, Katoh Y, Hasegawa A 2016 J. Nucl. Mater. 479 249Google Scholar

    [17]

    Fukuda M, Tanno T, Nogami S, Hasegawa A 2012 Mater. Trans. 53 2145Google Scholar

    [18]

    Ma P W, Mason D R, Dudarev S L 2020 Phys. Rev. Mater. 4 103609Google Scholar

    [19]

    Mannheim A, van Dommelen J A W, Geers M G D 2018 Mech. Mater. 123 43Google Scholar

    [20]

    Mannheim A, van Dommelen J A W, Geers M G D 2019 Comput. Mater. Sci. 170 109146Google Scholar

    [21]

    Barbu A, Clouet E 2007 Solid State Phenom. 129 51Google Scholar

    [22]

    Gilbert M R, Marian J, Sublet J C 2015 J. Nucl. Mater. 467 121Google Scholar

    [23]

    Gilbert M R, Sublet J C 2018 J. Nucl. Mater. 504 101Google Scholar

    [24]

    Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D, Kurtz R J 2015 J. Nucl. Mater. 462 329Google Scholar

    [25]

    Huang C H, Gilbert M R, Marian J 2018 J. Nucl. Mater. 499 204Google Scholar

    [26]

    Troev T, Nankov N, Yoshiie T 2011 Nucl. Instrum. Methods Phys. Res. B 269 566Google Scholar

    [27]

    Caturla M J, Rubia T, Victoria M, Corzine R K, Greene G A 2001 J. Nucl. Mater. 296 90Google Scholar

    [28]

    Vrielink M A O, Shah V, van Dommelen J A W, Geers M G D 2021 J. Nucl. Mater. 554 153068Google Scholar

    [29]

    Yi X, Sand A E, Mason D R, Kirk M A, Roberts S G, Nordlund K, Dudarev S L 2015 Epl 110 36001Google Scholar

    [30]

    Sand A E, Mason D R, De Backer A, Yi X, Dudarev S L, Nordlund K 2017 Mater. Res. Lett. 5 357Google Scholar

    [31]

    Ghoniem N M, Sharafat S 1980 J. Nucl. Mater. 92 121Google Scholar

    [32]

    Li Y G, Zhou W H, Ning R H, Huang L F, Zeng Z, Ju X 2012 Commun. Comput. Phys. 11 1547Google Scholar

    [33]

    Humphreys F J, Hatherly M 2004 Recrystallization and Related Annealing Phenomena (Oxford: Elsevier) pp232–242

    [34]

    Fanfoni M, Tomellini M 1998 Il Nuovo Cimento D 20 1171Google Scholar

    [35]

    Hallberg H 2011 Metals 1 16Google Scholar

    [36]

    Yi X, Jenkins M L, Hattar K, Edmondson P D, Roberts S G 2015 Acta Mater. 92 163Google Scholar

    [37]

    Yi X, Jenkins M L, Kirk M A, Zhou Z, Roberts S G 2016 Acta Mater. 112 105Google Scholar

    [38]

    Yi X 2014 Ph. D. Dissertation (Oxford: University of Oxford) pp207–234

    [39]

    Was G S 2017 Fundamentals of Radiation Materials Science (Berlin: Springer) pp191—203

    [40]

    Rollett A D, Gottstein G, Shvindlerman L S, Molodov D A 2004 Zeitschrift Fur. Metallkunde 95 226Google Scholar

    [41]

    Favre J, Fabregue D, Piot D, Tang N, Koizumi Y, Maire E, Chiba A 2013 Metall. Mater. Trans. A 44 5861Google Scholar

    [42]

    Klimenkov M, Duerrschnabel M, Jaentsch U, Lied P, Rieth M, Schneider H C, Terentyev D, Van Renterghem W 2022 J. Nucl. Mater. 572 154018Google Scholar

    [43]

    Li Y H, Zhou H B, Jin S, Zhang Y, Deng H, Lu G H 2017 Nucl. Fusion 57 046006Google Scholar

    [44]

    You Y W, Kong X S, Wu X, Liu C S, Fang Q F, Chen J L, Luo G N 2017 Nucl. Fusion 57 086006Google Scholar

    [45]

    Setyawan W, Selby A P, Juslin N, Stoller R E, Wirth B D, Kurtz R J 2015 J. Phys. Condens. Matter 27 225402Google Scholar

    [46]

    Nes E, Ryum N, Hunderi O 1985 Acta Metall. 33 11Google Scholar

  • 图 1  使用JMAK模型拟合钨等温退火实验再结晶分数的演变, 拟合用实验数据取自Lopez[7]

    Figure 1.  Using the JMAK model to fit the evolution of the recrystallization fraction in the isothermal annealing experiment of pure tungsten, the experimental data used for the fitting were taken from Lopez[7].

    图 2  不同中子辐照温度下的缺陷团簇尺寸与密度随辐照时间的演变 (a), (c), (e), (g), (i), (k)分别为V团簇在750, 850, 950, 1100, 1200, 1300 ℃下的演变; (b), (d), (f), (h), (j), (l) 分别为I团簇在750, 850, 950, 1100, 1200, 1300 ℃下的演变

    Figure 2.  Evolution of defect cluster size and density with irradiation time at different neutron irradiation temperatures: (a), (c), (e), (g), (i), (k) Evolution of V cluster at 750, 850, 950, 1100, 1200, 1300 ℃; (b), (d), (f), (h), (j), (l) I clusters evolution of cluster at 750, 850, 950, 1100, 1200, 1300 ℃.

    图 3  不同温度下Vn与V发生反应的速率系数 (a)不同温度下Vn吸收V反应的速率系数; (b)不同温度下Vn+1发射V反应的速率系数

    Figure 3.  Rate coefficients of the reaction between Vn and V at different temperatures: (a) Rate coefficients of Vn absorption V reactions at different temperatures; (b) rate coefficients of Vn+1 emission V reactions at different temperatures.

    图 4  (a)不同辐照温度下P的演变; (b)在截取的时间点处不同辐照温度下P的占比; (c)不同辐照温度下R的演变; (d)不同辐照温度下P×M的演变

    Figure 4.  (a) Evolution of driving force P at different irradiation temperatures; (b) proportion of defects contribution to driving force at different irradiation temperatures and time; (c) evolution of R at different irradiation temperatures; (d) evolution of product of driving force and grain boundary mobility (P×M) at different irradiation temperatures.

    图 5  只考虑辐照增强P及同时考虑辐照增强PM (P+M)的再结晶分数演变曲线

    Figure 5.  Recrystallization fraction (X) evolution curve considering only irradiation enhancement on driving force (P) and both irradiation enhancement driving force and grain boundary mobility (P+M).

    图 6  中子辐照下与未辐照下钨的半再结晶时间(${t_{X = 0.5}}$)随温度的演变

    Figure 6.  Evolution of semi-recrystallization time (${t_{X = 0.5}}$) of tungsten under neutron irradiation and non-irradiation with temperature.

    表 1  CD模型模拟HFIR堆中子辐照钨的源项相关参数

    Table 1.  Parameters related to source term of neutron irradiated tungsten in HFIR reactor simulated by CD model.

    参数NRTdpa
    /(10–7 dpa·s–1)
    Sdpa
    /(10–8 dpa·s–1)
    Gtot
    /(1021 m–3·s–1)
    数值2.166.414.06
    DownLoad: CSV
  • [1]

    Philipps V 2011 J. Nucl. Mater. 415 S2Google Scholar

    [2]

    Rieth M, Dudarev S L, Gonzalez de Vicente S M, et al. 2013 J. Nucl. Mater. 432 482Google Scholar

    [3]

    Norajitra P, Abdel-Khalik S I, Giancarli L M, Ihli T, Janeschitz G, Malang S, Mazul I V, Sardain P 2008 Fusion Eng. Des. 83 893Google Scholar

    [4]

    Abernethy R G 2017 J. Mater. Sci. Technol. 33 388Google Scholar

    [5]

    Coenen J W, Antusch S, Aumann M, et al. 2016 Phys. Scr. T 2016 014002Google Scholar

    [6]

    Hu X, Koyanagi T, Fukuda M, Katoh Y, Snead L L, Wirth B D 2016 J. Nucl. Mater. 480 235Google Scholar

    [7]

    Lopez A A 2015 Ph. D. Dissertation (Copenhagen: Technical University of Denmark)

    [8]

    Alfonso A, Jensen D J, Luo G N, Pantleon W 2014 J. Nucl. Mater. 455 591Google Scholar

    [9]

    Kang W A, Dr A, Xiang Z, Lla B, Xz B, Ywab C 2021 Mater. Sci. Eng. A 806 140828Google Scholar

    [10]

    Budaev V P, Martynenko Y V, Karpov A V, Belova N E, Zhitlukhin A M 2015 J. Nucl. Mater. 463 237Google Scholar

    [11]

    Bonnekoh C, Reiser J, Hartmaier A, Bonk S, Hoffmann A, Rieth M 2020 J. Mater. Sci. 55 12314Google Scholar

    [12]

    Ciucani U M, Thum A, Devos C, Pantleon W 2019 Nucl. Mater. Energy 20 100701Google Scholar

    [13]

    Gietl H, Koyanagi T, Hu X, Fukuda M, Hasegawa A, Katoh Y 2022 J. Alloys Compd. 901 163419Google Scholar

    [14]

    Duerrschnabel M, Klimenkov M, Jaentsch U, Rieth M, Schneider H C, Terentyev D 2021 Sci. Rep. 11 7572Google Scholar

    [15]

    Klimenkov M, Jaentsch U, Rieth M, Schneider H C, Armstrong D E J, Gibson J, Roberts S G 2016 Nucl. Mater. Energy 9 480Google Scholar

    [16]

    Fukuda M, Kumar N A P K, Koyanagi T, Garrison L M, Snead L L, Katoh Y, Hasegawa A 2016 J. Nucl. Mater. 479 249Google Scholar

    [17]

    Fukuda M, Tanno T, Nogami S, Hasegawa A 2012 Mater. Trans. 53 2145Google Scholar

    [18]

    Ma P W, Mason D R, Dudarev S L 2020 Phys. Rev. Mater. 4 103609Google Scholar

    [19]

    Mannheim A, van Dommelen J A W, Geers M G D 2018 Mech. Mater. 123 43Google Scholar

    [20]

    Mannheim A, van Dommelen J A W, Geers M G D 2019 Comput. Mater. Sci. 170 109146Google Scholar

    [21]

    Barbu A, Clouet E 2007 Solid State Phenom. 129 51Google Scholar

    [22]

    Gilbert M R, Marian J, Sublet J C 2015 J. Nucl. Mater. 467 121Google Scholar

    [23]

    Gilbert M R, Sublet J C 2018 J. Nucl. Mater. 504 101Google Scholar

    [24]

    Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D, Kurtz R J 2015 J. Nucl. Mater. 462 329Google Scholar

    [25]

    Huang C H, Gilbert M R, Marian J 2018 J. Nucl. Mater. 499 204Google Scholar

    [26]

    Troev T, Nankov N, Yoshiie T 2011 Nucl. Instrum. Methods Phys. Res. B 269 566Google Scholar

    [27]

    Caturla M J, Rubia T, Victoria M, Corzine R K, Greene G A 2001 J. Nucl. Mater. 296 90Google Scholar

    [28]

    Vrielink M A O, Shah V, van Dommelen J A W, Geers M G D 2021 J. Nucl. Mater. 554 153068Google Scholar

    [29]

    Yi X, Sand A E, Mason D R, Kirk M A, Roberts S G, Nordlund K, Dudarev S L 2015 Epl 110 36001Google Scholar

    [30]

    Sand A E, Mason D R, De Backer A, Yi X, Dudarev S L, Nordlund K 2017 Mater. Res. Lett. 5 357Google Scholar

    [31]

    Ghoniem N M, Sharafat S 1980 J. Nucl. Mater. 92 121Google Scholar

    [32]

    Li Y G, Zhou W H, Ning R H, Huang L F, Zeng Z, Ju X 2012 Commun. Comput. Phys. 11 1547Google Scholar

    [33]

    Humphreys F J, Hatherly M 2004 Recrystallization and Related Annealing Phenomena (Oxford: Elsevier) pp232–242

    [34]

    Fanfoni M, Tomellini M 1998 Il Nuovo Cimento D 20 1171Google Scholar

    [35]

    Hallberg H 2011 Metals 1 16Google Scholar

    [36]

    Yi X, Jenkins M L, Hattar K, Edmondson P D, Roberts S G 2015 Acta Mater. 92 163Google Scholar

    [37]

    Yi X, Jenkins M L, Kirk M A, Zhou Z, Roberts S G 2016 Acta Mater. 112 105Google Scholar

    [38]

    Yi X 2014 Ph. D. Dissertation (Oxford: University of Oxford) pp207–234

    [39]

    Was G S 2017 Fundamentals of Radiation Materials Science (Berlin: Springer) pp191—203

    [40]

    Rollett A D, Gottstein G, Shvindlerman L S, Molodov D A 2004 Zeitschrift Fur. Metallkunde 95 226Google Scholar

    [41]

    Favre J, Fabregue D, Piot D, Tang N, Koizumi Y, Maire E, Chiba A 2013 Metall. Mater. Trans. A 44 5861Google Scholar

    [42]

    Klimenkov M, Duerrschnabel M, Jaentsch U, Lied P, Rieth M, Schneider H C, Terentyev D, Van Renterghem W 2022 J. Nucl. Mater. 572 154018Google Scholar

    [43]

    Li Y H, Zhou H B, Jin S, Zhang Y, Deng H, Lu G H 2017 Nucl. Fusion 57 046006Google Scholar

    [44]

    You Y W, Kong X S, Wu X, Liu C S, Fang Q F, Chen J L, Luo G N 2017 Nucl. Fusion 57 086006Google Scholar

    [45]

    Setyawan W, Selby A P, Juslin N, Stoller R E, Wirth B D, Kurtz R J 2015 J. Phys. Condens. Matter 27 225402Google Scholar

    [46]

    Nes E, Ryum N, Hunderi O 1985 Acta Metall. 33 11Google Scholar

  • [1] Qi Chao, Ma Yu-Tian, Qi Yan-Fei, Xiao Shan-Qu, Wang Bo. Influence of microstructure on thermal fatigue effect of laminated tungsten based plasma-facing material. Acta Physica Sinica, 2024, 73(11): 112801. doi: 10.7498/aps.73.20240007
    [2] Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Ma Teng, Cai Zong-Qi, Chen Yi-Qiang. Study on characteristics of neutron-induced leakage current increase for SiC power devices. Acta Physica Sinica, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [3] Xu Chi, Wan Fa-Rong. Analysis of dislocation characteristics and inside-outside contrasts in irradiated and annealed tungsten as a fusion reactor material. Acta Physica Sinica, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [4] Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping. Simulation study of neutron radiation damage to cadmium zinc telluride. Acta Physica Sinica, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [5] Wang Kai, Sun Jing-Ya, Pan Chang-Ji, Wang Fei-Fei, Zhang Ke, Chen Zhi-Cheng. Ultrafast dynamic response and temporal shaping modulation of tungsten disulfide irradiated by femtosecond laser. Acta Physica Sinica, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [6] Huang Wen-Jun, Qiao Jun-Wei, Chen Shun-Hua, Wang Xue-Jiao, Wu Yu-Cheng. Preparation, structures and properties of tungsten-containing refractory high entropy alloys. Acta Physica Sinica, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [7] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [8] Zhou Liang-Fu, Zhang Jing, He Wen-Hao, Wang Dong, Su Xue, Yang Dong-Yang, Li Yu-Hong. The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation. Acta Physica Sinica, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [9] Ma Yu-Tian, Liu Jun-Biao, Han Li, Tian Li-Feng, Wang Xue-Cong, Meng Xiang-Min, Xiao Shan-Qu, Wang Bo. Helium behavior of tungsten investigated by helium ion microscope. Acta Physica Sinica, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [10] Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan. Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics. Acta Physica Sinica, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [11] Sun Ling-Tao, Guo Chao-Zhong, Xiao Xu-Yang. Dynamics simulation on the segregations of Cu induced Co-based cluster structures and their properties. Acta Physica Sinica, 2016, 65(12): 123601. doi: 10.7498/aps.65.123601
    [12] Guo Hong-Yan, Xia Min, Yan Qing-Zhi, Guo Li-Ping, Chen Ji-Hong, Ge Chang-Chun. Microstructure of medium energy and high density helium ion implanted tungsten. Acta Physica Sinica, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [13] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang. Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [14] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [15] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [16] Wang Xin-Xin, Zhang Ying, Zhou Hong-Bo, Wang Jin-Long. Effects of niobium on helium behaviors in tungsten:a first-principles investigation. Acta Physica Sinica, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [17] Gu Wen-Ping, Zhang Lin, Li Qing-Hua, Qiu Yan-Zhang, Hao Yue, Quan Si, Liu Pan-Zhi. Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [18] Guo Long-Ting, Sun Ji-Zhong, Huang Yan, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of low-energy hydrogen atoms bombarding tungsten (001) surface at different angles and their depth distribution. Acta Physica Sinica, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [19] Feng Xi-Qi, Lin Qi-Sheng, Man Zhen-Yong, Liao Jin-Ying, Hu Guan-Qin. . Acta Physica Sinica, 2002, 51(2): 315-321. doi: 10.7498/aps.51.315
    [20] Li Yang-Xian, Liu He-Yan, Niu Peng-Juan, Liu Cai-Chi, Xu Yue-Sheng, Yang De-Ren, Que Duan-Lin. . Acta Physica Sinica, 2002, 51(10): 2407-2410. doi: 10.7498/aps.51.2407
  • supplement 16-20230531 补充材料.pdf supplement
Metrics
  • Abstract views:  4028
  • PDF Downloads:  119
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2023
  • Accepted Date:  31 May 2023
  • Available Online:  20 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回