Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation

Zhou Liang-Fu Zhang Jing He Wen-Hao Wang Dong Su Xue Yang Dong-Yang Li Yu-Hong

Citation:

The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation

Zhou Liang-Fu, Zhang Jing, He Wen-Hao, Wang Dong, Su Xue, Yang Dong-Yang, Li Yu-Hong
PDF
HTML
Get Citation
  • Tungsten (W) is a potential candidate for plasma facing materials (PFMs) of fusion reactor. The helium (He) produced in fusion reaction is insoluble and easy to gather and form to He bubbles in W, resulting in embrittlement and degradation of the performance of the W matrix. In this paper, based on molecular dynamics, the nucleation and growth of helium bubbles in the bulk and at ∑3[211](110) and ∑9[110](411) grain boundaries of W was studied. As a result, the growth mechanism of Helium bubbles at grain boundary of W was different from in bulk. Helium bubbles in bulk W grow up by extruding dislocation rings. The growth mechanism of helium bubbles at ∑3[211](110) grain boundary was as follows: Firstly, a small amount of W interstitial atoms were extruded and emitted. And then the 1/2$\left\langle {111} \right\rangle $ dislocation line was extruded. Finally, the 1/2$\left\langle {111} \right\rangle $ dislocation line would migrate along the direction of [111] of the grain boundary interface. Moreover, the emission of W interstitial atoms and dislocation extrusion of the helium bubble were not observed in our simulated time scale at the ∑9[110](411) grain boundary. Then we used the NEB method to calculate the diffusion barrier of self-gap atoms in the bulk and at ∑3[211](110) and ∑9[110](411) grain boundaries of W, which explained the simulation results. The migration energy barrier of W self-gap atoms in the bulk and at ∑3[211](110) grain boundary was only a few to a few millielectron volts. So as long as W self-gap atoms dissociated from the surface of the He bubble in the thermal relaxation process, they can be easily migrated out. However, The migration energy of the W self-gap atom at the ∑9[110](411) grain boundary can be from a few tenths to a few electron volts. Even during the thermal relaxation process, the W self-gap atoms dissociated from the surface of the He bubble. It was difficult for the W self-gap atoms migrated out. Finally, the correlation between He bubble size and stress released was given. Either in bulk or at ∑3[211](110) and ∑9[110](411) grain boundaries of W, after the pressure of the helium bubble becomes stable with time, the radius of the helium bubble would increase rapidly whenever the pressure dropped sharply. So there was a small step on the curve of the evolution of the radius of the helium bubble with time. Thus, helium bubbles in W could promote growth by releasing pressure intermittently.
      Corresponding author: Li Yu-Hong, liyuhong@lzu.edu.cn
    [1]

    Pintsuk G 2012 Comprehensive Nuclear Materials (Vol. 5) (Oxford: Elsevier Press) p551

    [2]

    Hirai T, Escourbiac F, Carpentier-Chouchana S, Durocher A, Fedosov A, Ferrand L, Jokinen T, Komarov V, Merola M, Mitteau R, Pitts R A, Shu W, Sugihara M, Barabash V, Kuznetsov V, Riccardi B, Suzuki S 2014 Phys. Scr. T 159 014006

    [3]

    Wei Q, Li N, Sun K, Wang L 2010 Scr. Mater. 63 430Google Scholar

    [4]

    Hetherly J, Martinez E, Di Z, Nastasi M, Caro A 2012 Scr. Mater. 66 17Google Scholar

    [5]

    郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯 2016 物理学报 65 077803Google Scholar

    Guo H Y, Xia M, Yan Q Z, Guo L P, Ge C C 2016 Acta Phys. Sin. 65 077803Google Scholar

    [6]

    Wang J, Gao X, Gao N, Wang Z G, Cui M, Wei K, Yao C, Sun J, Li B, Zhu Y, Pang L, Li Y, Wang D, Xie E 2015 J. Nucl. Mater. 457 182Google Scholar

    [7]

    Ding M S, Du J P, Wan L, Ogata S, Tian L, EvanMa, Han W Z, Li J, Shan Z W 2016 Nano. Lett. 16 4118Google Scholar

    [8]

    马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波 2016 物理学报 68 040702

    Ma Y T, Liu J B, Han L, Tian L F, Wang X C, Meng X M, Xiao S Q, Wang B 2016 Acta Phys. Sin. 68 040702

    [9]

    王欣欣, 张颖, 周洪波, 王金龙 2014 物理学报 63 046103Google Scholar

    Wang X X, Zhang Y, Zhou H B, Wang J L 2014 Acta Phys. Sin. 63 046103Google Scholar

    [10]

    El-Atwani O, Gonderman S, Suslov S, Efe M, Temmerman G D, Morgan T, Bystrov K, Hattar K, Allain J P 2015 Fusion Eng. Des. 93 9Google Scholar

    [11]

    Miyamoto M, Mikami S, Nagashima H, Iijima N, Nishijima D, Doerner R P, Yoshida N, Watanabe H, Ueda Y, Sagara A 2015 J. Nucl. Mater. 463 333Google Scholar

    [12]

    Wang J, Niu L-L, Shu X, Zhang Y 2015 Nucl. Fusion 55 092003Google Scholar

    [13]

    Kobayashi R, Hattori T, Tamura T, Ogata S 2015 J. Nucl. Mater. 463 1071Google Scholar

    [14]

    Sandoval L, Perez D, Uberuaga B P, Voter A F 2015 Phys. Rev. Lett. 114 105502Google Scholar

    [15]

    Yang S T, Hu N W, Gou X Q, Wang C L, Zhu X L 2016 RCS Advances 64 59875

    [16]

    Yang L, Deng H Q, Gao F, Heinisch H L, Kurtz R J, Hu S Y, Li Y L, Zu X T 2013 Nucl. Instrum. Methods B 303 68Google Scholar

    [17]

    Xie H X, Gao N, Xu K, Lu G H, Yue T, Yin F X 2017 Acta Mater. 141 10Google Scholar

    [18]

    Liu X Y, Uberuaga B P, Perez D, Voter A F 2018 Mater. Res. Lett. 9 522

    [19]

    Yang L, Gao F, Kurtz R J, Zu X T, Peng S M, Long X G, Zhou X S 2015 Acta Mater. 97 86Google Scholar

    [20]

    Zhao Q, Zhang Z, Li Y, Ouyang X 2017 Sci. Technol. Nucl. Ins. 2017 1

    [21]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [22]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [23]

    Ackland G J, Thetford R 1987 Philos. Mag. A 56 15

    [24]

    Beck D E 1968 Mol. Phys. 14 311Google Scholar

    [25]

    Juslin N, Wirth B D 2013 J. Nucl. Mater. 432 61Google Scholar

    [26]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (Vol. 1) (New York: Pergamon Press) p93

    [27]

    Stukowski A, Albe K 2010 Modell. Simul. Mater. Sci. Eng. 18 085001Google Scholar

    [28]

    Guo S H, Zhu B E, Liu W C, Pan Z Y, Wang Y X 2009 Nucl. Instrum. Methods B 267 3278Google Scholar

    [29]

    Yang L, Zu Z Q, Peng S M, Long X G, Zhou X S, Zu X T, Heinisch H L, Kurtz R J, Gao F 2013 J. Nucl. Mater. 441 6Google Scholar

    [30]

    Rycroft C H, Grest G S, Landry J W, Bazant M Z 2006 Phys. Rev. E 74 021306Google Scholar

    [31]

    Chen L, Liu Y L, Zhou H B, Jin S, Zhang Y, Lu G H 2012 Sci. Chin. Phys. Mech. 55 614Google Scholar

    [32]

    He W H, Gao X, Gao N, Wang J, Wang D, Cui M H, Pang L L, Wang Z G 2018 Chin. Phys. Lett. 35 49

    [33]

    Banisalman M J, Oda T 2019 Comput. Mater. Sci. 158 346Google Scholar

  • 图 1  单晶W中氦团簇成核长大初期的位错环发射过程

    Figure 1.  The punching-loop at the early stage of nucleation and growth of helium clusters in bulk W

    图 2  氦泡在W中∑3[211](110)晶界处的成核长大过程 (a) 0.043 ns, 8 He, 1 SIA; (b) 0.120 ns, 24 He, 6 SIAs; (c) 0.125 ns, 24 He, 6 SIAs; (d) 0.466 ns, 93 He, 21 SIAs; (e) 0.469 ns, 94 He, 22 SIAs; (f) 0.470 ns, 94 He, 22 SIAs

    Figure 2.  The nucleation and growth of helium clusters at grain boundary ∑3[211](110) in W: (a) 0.043 ns, 8 He, 1 SIA; (b) 0.120 ns, 24 He, 6 SIAs; (c) 0.125 ns, 24 He, 6 SIAs; (d) 0.466 ns, 93 He, 21 SIAs; (e) 0.469 ns, 94 He, 22 SIAs; (f) 0.470 ns, 94 He, 22 SIAs

    图 3  氦泡在W中∑9[110](411)晶界处的成核长大过程 (a) 0.02 ns, 3 He, 1 SIA; (b) 0.1 ns, 19 He, 7 SIAs; (c) 0.5 ns, 99 He, 23 SIAs; (d) 1 ns, 199 He, 44 SIAs; (e) 2 ns, 399 He, 121 SIAs; (f) 2 ns

    Figure 3.  The nucleation and growth of helium clusters at grain boundary ∑9[110](411) in W: (a) 0.02 ns, 3 He, 1 SIA; (b) 0.1 ns, 19 He, 7 SIAs; (c) 0.5 ns, 99 He, 23 SIAs; (d) 1 ns, 199 He, 44 SIAs; (e) 2 ns, 399 He, 121 SIAs; (f) 2 ns

    图 4  单晶W中自间隙原子的迁移能垒

    Figure 4.  Calculation of the migration barrier for a W crowdion defect in bulk W

    图 5  W中∑3[211](110)晶界处W自间隙原子的迁移能垒

    Figure 5.  Calculation of the migration barrier for a W crowdion defect at grain boundary ∑3[211](110) in W

    图 6  W中∑9[110](411)晶界处的自间隙原子的迁移能垒

    Figure 6.  Calculation of the migration barrier for a W crowdion defect at grain boundary ∑9[110](411) in W

    图 7  (a)单晶W中氦泡的压强与半径随时间的变化; (b) ∑3[211](110)晶界处氦泡的压强与半径随时间的变化; (c) ∑9[110](411)晶界处氦泡的压强与半径随时间的变化

    Figure 7.  (a) The radius and pressure of the He bubble as a function of simulation time in bulk W; (b) the radius and pressure of the He bubble as a function of simulation time at at grain boundary ∑3[211](110); (c) the radius and pressure of the He bubble as a function of simulation time at at grain boundary ∑9[110](411)

    表 1  单晶W及晶界处弗伦克尔缺陷对的形成能

    Table 1.  Formation energy of frenkel defect pair in bulk W and at grain boundaries.

    缺陷位置弗伦克尔缺陷对的形成能/eV
    单晶W中14.10
    ∑3[211](110)晶界处12.73
    ∑9[110](411)晶界处3.84
    DownLoad: CSV
  • [1]

    Pintsuk G 2012 Comprehensive Nuclear Materials (Vol. 5) (Oxford: Elsevier Press) p551

    [2]

    Hirai T, Escourbiac F, Carpentier-Chouchana S, Durocher A, Fedosov A, Ferrand L, Jokinen T, Komarov V, Merola M, Mitteau R, Pitts R A, Shu W, Sugihara M, Barabash V, Kuznetsov V, Riccardi B, Suzuki S 2014 Phys. Scr. T 159 014006

    [3]

    Wei Q, Li N, Sun K, Wang L 2010 Scr. Mater. 63 430Google Scholar

    [4]

    Hetherly J, Martinez E, Di Z, Nastasi M, Caro A 2012 Scr. Mater. 66 17Google Scholar

    [5]

    郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯 2016 物理学报 65 077803Google Scholar

    Guo H Y, Xia M, Yan Q Z, Guo L P, Ge C C 2016 Acta Phys. Sin. 65 077803Google Scholar

    [6]

    Wang J, Gao X, Gao N, Wang Z G, Cui M, Wei K, Yao C, Sun J, Li B, Zhu Y, Pang L, Li Y, Wang D, Xie E 2015 J. Nucl. Mater. 457 182Google Scholar

    [7]

    Ding M S, Du J P, Wan L, Ogata S, Tian L, EvanMa, Han W Z, Li J, Shan Z W 2016 Nano. Lett. 16 4118Google Scholar

    [8]

    马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波 2016 物理学报 68 040702

    Ma Y T, Liu J B, Han L, Tian L F, Wang X C, Meng X M, Xiao S Q, Wang B 2016 Acta Phys. Sin. 68 040702

    [9]

    王欣欣, 张颖, 周洪波, 王金龙 2014 物理学报 63 046103Google Scholar

    Wang X X, Zhang Y, Zhou H B, Wang J L 2014 Acta Phys. Sin. 63 046103Google Scholar

    [10]

    El-Atwani O, Gonderman S, Suslov S, Efe M, Temmerman G D, Morgan T, Bystrov K, Hattar K, Allain J P 2015 Fusion Eng. Des. 93 9Google Scholar

    [11]

    Miyamoto M, Mikami S, Nagashima H, Iijima N, Nishijima D, Doerner R P, Yoshida N, Watanabe H, Ueda Y, Sagara A 2015 J. Nucl. Mater. 463 333Google Scholar

    [12]

    Wang J, Niu L-L, Shu X, Zhang Y 2015 Nucl. Fusion 55 092003Google Scholar

    [13]

    Kobayashi R, Hattori T, Tamura T, Ogata S 2015 J. Nucl. Mater. 463 1071Google Scholar

    [14]

    Sandoval L, Perez D, Uberuaga B P, Voter A F 2015 Phys. Rev. Lett. 114 105502Google Scholar

    [15]

    Yang S T, Hu N W, Gou X Q, Wang C L, Zhu X L 2016 RCS Advances 64 59875

    [16]

    Yang L, Deng H Q, Gao F, Heinisch H L, Kurtz R J, Hu S Y, Li Y L, Zu X T 2013 Nucl. Instrum. Methods B 303 68Google Scholar

    [17]

    Xie H X, Gao N, Xu K, Lu G H, Yue T, Yin F X 2017 Acta Mater. 141 10Google Scholar

    [18]

    Liu X Y, Uberuaga B P, Perez D, Voter A F 2018 Mater. Res. Lett. 9 522

    [19]

    Yang L, Gao F, Kurtz R J, Zu X T, Peng S M, Long X G, Zhou X S 2015 Acta Mater. 97 86Google Scholar

    [20]

    Zhao Q, Zhang Z, Li Y, Ouyang X 2017 Sci. Technol. Nucl. Ins. 2017 1

    [21]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [22]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [23]

    Ackland G J, Thetford R 1987 Philos. Mag. A 56 15

    [24]

    Beck D E 1968 Mol. Phys. 14 311Google Scholar

    [25]

    Juslin N, Wirth B D 2013 J. Nucl. Mater. 432 61Google Scholar

    [26]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (Vol. 1) (New York: Pergamon Press) p93

    [27]

    Stukowski A, Albe K 2010 Modell. Simul. Mater. Sci. Eng. 18 085001Google Scholar

    [28]

    Guo S H, Zhu B E, Liu W C, Pan Z Y, Wang Y X 2009 Nucl. Instrum. Methods B 267 3278Google Scholar

    [29]

    Yang L, Zu Z Q, Peng S M, Long X G, Zhou X S, Zu X T, Heinisch H L, Kurtz R J, Gao F 2013 J. Nucl. Mater. 441 6Google Scholar

    [30]

    Rycroft C H, Grest G S, Landry J W, Bazant M Z 2006 Phys. Rev. E 74 021306Google Scholar

    [31]

    Chen L, Liu Y L, Zhou H B, Jin S, Zhang Y, Lu G H 2012 Sci. Chin. Phys. Mech. 55 614Google Scholar

    [32]

    He W H, Gao X, Gao N, Wang J, Wang D, Cui M H, Pang L L, Wang Z G 2018 Chin. Phys. Lett. 35 49

    [33]

    Banisalman M J, Oda T 2019 Comput. Mater. Sci. 158 346Google Scholar

  • [1] Zhang Yu-Hang, Li Xiao-Bao, Zhan Chun-Xiao, Wang Mei-Qin, Pu Yu-Xue. Molecular dynamics simulation study on mechanical properties of Janus MoSSe monolayer. Acta Physica Sinica, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [2] Li Xiang, Yin Yi-Hui, Zhang Yuan-Zhang. Molecular dynamics simulation of helium bubble ultimate pressure in α-Fe. Acta Physica Sinica, 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [3] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [4] Fu Bao-Qin, Hou Qing, Wang Jun, Qiu Ming-Jie, Cui Jie-Chao. Molecular dynamics study of trapping and detrapping process of hydrogen in tungsten vacancy. Acta Physica Sinica, 2019, 68(24): 240201. doi: 10.7498/aps.68.20190701
    [5] Ma Yu-Tian, Liu Jun-Biao, Han Li, Tian Li-Feng, Wang Xue-Cong, Meng Xiang-Min, Xiao Shan-Qu, Wang Bo. Helium behavior of tungsten investigated by helium ion microscope. Acta Physica Sinica, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [6] Guo Hong-Yan, Xia Min, Yan Qing-Zhi, Guo Li-Ping, Chen Ji-Hong, Ge Chang-Chun. Microstructure of medium energy and high density helium ion implanted tungsten. Acta Physica Sinica, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [7] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [8] Liang Li, Tan Xiao-Hua, Xiang Wei, Wang Yuan, Cheng Yan-Lin, Ma Ming-Wang. A molecular dynamics study of temperature and depth effect on helium bubble released from Ti surface. Acta Physica Sinica, 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [9] Yuan Lin, Jing Peng, Liu Yan-Hua, Xu Zhen-Hai, Shan De-Bin, Guo Bin. Molecular dynamics simulation of polycrystal silver nanowires under tensile deformation. Acta Physica Sinica, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [10] Wang Xin-Xin, Zhang Ying, Zhou Hong-Bo, Wang Jin-Long. Effects of niobium on helium behaviors in tungsten:a first-principles investigation. Acta Physica Sinica, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [11] Ma Bin, Rao Qiu-Hua, He Yue-Hui, Wang Shi-Liang. Molecular dynamics simulation of tensile deformation mechanism of the single crystal tungsten nanowire. Acta Physica Sinica, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [12] Guo Long-Ting, Sun Ji-Zhong, Huang Yan, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of low-energy hydrogen atoms bombarding tungsten (001) surface at different angles and their depth distribution. Acta Physica Sinica, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [13] Liu Wang, Wu Qi-Qi, Chen Shun-Li, Zhu Jing-Jun, An Zhu, Wang Yuan. Helium effect on the stability of the interface of Cu/W nanomultilayer. Acta Physica Sinica, 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [14] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [15] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [16] Chen Min, Wang Jun, Hou Qing. Influence of helium on volume change and stability of titanium structure: An atomistic simulation. Acta Physica Sinica, 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [17] Wang Hai-Yan, Zhu Wen-Jun, Deng Xiao-Liang, Song Zhen-Fei, Chen Xiang-Rong. Plastic deformation of helium bubble and void in aluminum under shock loading. Acta Physica Sinica, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [18] Wang Hai-Yan, Zhu Wen-Jun, Song Zhen-Fei, Liu Shao-Jun, Chen Xiang-Rong, He Hong-Liang. The influence of helium bubble on the elastic properties of aluminum. Acta Physica Sinica, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [19] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] Wen Yu-Hua, Zhu Tao, Cao Li-Xia, Wang Chong-Yu. Ni/Ni3Al grain boundary of Ni-based single superalloys: molecular dyn amics simulation. Acta Physica Sinica, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
Metrics
  • Abstract views:  9162
  • PDF Downloads:  185
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2019
  • Accepted Date:  09 December 2019
  • Published Online:  20 February 2020

/

返回文章
返回