-
Tungsten (W) alloys and W-based alloys are the primary candidate materials for plasma-facing components in future fusion reactors (e.g. ITER and CFETR). One of the critical issues still to be clarified in the design of the fusion reactor materials is the retention of hydrogen (H) isotopes in W, when the plasma-facing materials are supposed to sustain high-flux plasma and high-energy neutron. The dynamical behaviours of H in W with radiation defects (e.g. vacancy) are of serious concerns for understanding the mechanism of H capture, retention and permeation in W. In this work, a new model to extract the effective capture radius (ECR) and dissociation coefficient simultaneously is presented through coupling the trapping process and detrapping process of H in W vacancy. In the new model, the quantity ratio of vacancy to H atom in vacancy-H complex (VHx+1) in the molecular dynamics (MD) simulations is described as a function of time, while the exact occurrence time of corresponding event is not required. This new model, combined with extensive MD calculations, enables the simultaneous determining of the ECR and dissociation coefficient of H in W vacancy. It is found that the parameters are dependent not only on the event type but also on temperature. The dissociation energy of H from vacancy-H complex decreases gradually with the increase of the trapped number of H atoms in the vacancy-H complex. It is also found that the common assumption (i.e. the ECR is equal to one lattice constant and the pre-exponential factor is equal to 1013 s–1) in the long-term simulation methods (e.g. kinetic Monte Carlo and rate theory) is not always valid, since these calculated dynamical parameters are dispersive. The new model to obtain more reliable results with lower cost of computing resources can be easily extended into the other similar kinetic processes (e.g. H/He trapping and detrapping processes in other materials systems). These calculated dynamical parameters should be potentially helpful in supplying the initial input parameters for the long-term simulation methods.
-
Keywords:
- capture radius /
- dissociation coefficient /
- molecular dynamics /
- vacancy
[1] Lu G H, Zhou H B, Becquart C S 2014 Nucl. Fusion 54 086001Google Scholar
[2] 李建刚, 宋云涛, 刘永, 汪小琳, 万元熙 2016 聚变工程试验堆装置主机设计 (北京: 科学出版社) 第250−252页
Li J G, Song Y T, Liu Y, Wang X L, Wan Y X 2016 Main Machine Design of Fusion Engineering Test Reactor (Beijing: Science Press) pp250−252 (in Chinese)
[3] Jia Y Z, Liu W, Xu B, Luo G N, Li C, Fu B Q, de Temmerman G 2015 J. Nucl. Mater. 463 312Google Scholar
[4] Yi X, Jenkins M L, Hattar K, Edmondson P D, Roberts S G 2015 Acta Mater. 92 163Google Scholar
[5] Hu X, Koyanagi T, Fukuda M, Kumar N A P K, Snead L L, Wirth B D, Katoh Y 2016 J. Nucl. Mater. 480 235Google Scholar
[6] Fu B Q, Lai W S, Yuan Y, Xu H Y, Li C, Jia Y Z, Liu W 2013 Chinese Phys. B 22 126601Google Scholar
[7] Ye M Y 2005 Plasma Sci. Technol. 7 2828Google Scholar
[8] Fu B Q, Qiu M J, Zhai L, Yang A L, Hou Q 2019 Nucl. Instrum. Meth. B 450 220Google Scholar
[9] Oyaidzu M, Hayashi T, Alimov V K 2016 Nucl. Mater. Energy 9 93Google Scholar
[10] Jia Y Z, Liu W, Xu B, Qu S L, Shi L Q, Morgan T W 2017 Nucl. Fusion 57 034003Google Scholar
[11] Heinola K, Ahlgren T 2010 Phys. Rev. B 81 073409Google Scholar
[12] Frauenfelder R 1969 J. Vac. Sci. Technol. 6 388Google Scholar
[13] Qiu M J, Zhai L, Cui J C, Fu B Q, Li M, Hou Q 2018 Chin. Phys. B 27 073103Google Scholar
[14] Liu Y L, Zhang Y, Luo G N, Lu G H 2009 J. Nucl. Mater. 390/391 1032Google Scholar
[15] Jiang B, Wan F R, Geng W T 2010 Phys. Rev. B 81 134112
[16] Liu Y L, Gao A Y, Lu W, Zhou H B, Zhang Y 2012 Chin. Phys. Lett. 29 077101
[17] Guo W, Ge L, Yuan Y, Cheng L, Wang S, Zhang X, Lu G H 2019 Nucl. Fusion 59 026005Google Scholar
[18] Terentyev D, Dubinko V, Bakaev A, Zayachuk Y, van Renterghem W, Grigorev P 2014 Nucl. Fusion 54 042004Google Scholar
[19] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016Google Scholar
[20] Wang X X, Niu L L, Wang S 2017 J. Nucl. Mater. 487 158Google Scholar
[21] Fu B Q, Xu B, Lai W S, Yuan Y, Xu H Y, Li C, Jia Y Z, Liu W 2013 J. Nucl. Mater. 441 24Google Scholar
[22] 王欣欣, 张颖, 周洪波, 王金龙 2014 物理学报 63 046103Google Scholar
Wang X X, Zhang Y, Zhou H B, Wang J L 2014 Acta Phys. Sin. 63 046103Google Scholar
[23] 汪俊, 张宝玲, 周宇璐, 侯氢 2011 物理学报 60 106601Google Scholar
Wang J, Zhang B L, Zhou Y L, Hou Q 2011 Acta Phys. Sin. 60 106601Google Scholar
[24] 严六明, 朱素华 2013 分子动力学模拟的理论与实践 (北京: 科学出版社) 第6−12页
Yan L M, Zhu S H 2013 Theory and Practice of Molecular Dynamics Simulation (Beijing: Science Press) pp6−12 (in Chinese)
[25] Hou Q, Li M, Zhou Y, Cui J, Cui Z, Wang J 2013 Comput. Phys. Commun. 184 2091Google Scholar
[26] Fu B Q, Qiu M J, Cui J C, Li M, Hou Q 2018 J. Nucl. Mater. 508 278Google Scholar
[27] Fu B Q, Qiu M J, Cui J C, Li M, Wang J, Hou Q 2019 Nucl. Instrum. Meth. B 452 21Google Scholar
[28] Zhou Y L, Wang J, Hou Q, Deng A H 2014 J. Nucl. Mater. 446 49Google Scholar
[29] Chandrasekhar S 1943 Rev. Mod. Phys. 15 1Google Scholar
[30] Fernandez N, Ferro Y, Kato D 2015 Acta Mater. 94 307Google Scholar
[31] Ahlgren T, Bukonte L 2016 J. Nucl. Mater. 479 195Google Scholar
[32] Bonny G, Grigorev P, Terentyev D 2014 J. Phys.-Condens. Mat. 26 485001Google Scholar
[33] Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637Google Scholar
[34] Fu B Q, Liu W, Li Z L 2009 Appl. Surf. Sci. 255 8511Google Scholar
[35] Marinica M C, Ventelon L, Gilbert M R, Proville L, Dudarev S L, Marian J, Bencteux G, Willaime F 2013 J. Phys.-Condens. Mat. 25 395502Google Scholar
[36] Stukowski A 2010 Model. Simul. Mater. Sci. 18 015012Google Scholar
[37] Cheng G J, Fu B Q, Hou Q, Zhou X S, Wang J 2016 Chinese Phys. B 25 076602Google Scholar
[38] Fu B Q, Fitzgerald S P, Hou Q, Wang J, Li M 2017 Nucl. Instrum. Meth. B 393 169Google Scholar
-
图 2 不同温度下, 空位-H复合体(VHx+1)的含量(
${y_{{\rm{V}}{{\rm{H}}_{x + 1}}}}\left( t \right) = {{{N_{{\rm{V}}{{\rm{H}}_{x + 1}}}}\left( t \right)} / {{N_{\rm{b}}}}}$ )与时间(t)的变化, 其中曲线由 (10)式拟合Figure 2. Ratio of VHx+1 in the simulation (
${y_{{\rm{V}}{{\rm{H}}_{x + 1}}}}\left( t \right) = {{{N_{{\rm{V}}{{\rm{H}}_{x + 1}}}}\left( t \right)} / {{N_{\rm{b}}}}}$ ) as function of time (t), where the curves are fitted by Eq. (10). -
[1] Lu G H, Zhou H B, Becquart C S 2014 Nucl. Fusion 54 086001Google Scholar
[2] 李建刚, 宋云涛, 刘永, 汪小琳, 万元熙 2016 聚变工程试验堆装置主机设计 (北京: 科学出版社) 第250−252页
Li J G, Song Y T, Liu Y, Wang X L, Wan Y X 2016 Main Machine Design of Fusion Engineering Test Reactor (Beijing: Science Press) pp250−252 (in Chinese)
[3] Jia Y Z, Liu W, Xu B, Luo G N, Li C, Fu B Q, de Temmerman G 2015 J. Nucl. Mater. 463 312Google Scholar
[4] Yi X, Jenkins M L, Hattar K, Edmondson P D, Roberts S G 2015 Acta Mater. 92 163Google Scholar
[5] Hu X, Koyanagi T, Fukuda M, Kumar N A P K, Snead L L, Wirth B D, Katoh Y 2016 J. Nucl. Mater. 480 235Google Scholar
[6] Fu B Q, Lai W S, Yuan Y, Xu H Y, Li C, Jia Y Z, Liu W 2013 Chinese Phys. B 22 126601Google Scholar
[7] Ye M Y 2005 Plasma Sci. Technol. 7 2828Google Scholar
[8] Fu B Q, Qiu M J, Zhai L, Yang A L, Hou Q 2019 Nucl. Instrum. Meth. B 450 220Google Scholar
[9] Oyaidzu M, Hayashi T, Alimov V K 2016 Nucl. Mater. Energy 9 93Google Scholar
[10] Jia Y Z, Liu W, Xu B, Qu S L, Shi L Q, Morgan T W 2017 Nucl. Fusion 57 034003Google Scholar
[11] Heinola K, Ahlgren T 2010 Phys. Rev. B 81 073409Google Scholar
[12] Frauenfelder R 1969 J. Vac. Sci. Technol. 6 388Google Scholar
[13] Qiu M J, Zhai L, Cui J C, Fu B Q, Li M, Hou Q 2018 Chin. Phys. B 27 073103Google Scholar
[14] Liu Y L, Zhang Y, Luo G N, Lu G H 2009 J. Nucl. Mater. 390/391 1032Google Scholar
[15] Jiang B, Wan F R, Geng W T 2010 Phys. Rev. B 81 134112
[16] Liu Y L, Gao A Y, Lu W, Zhou H B, Zhang Y 2012 Chin. Phys. Lett. 29 077101
[17] Guo W, Ge L, Yuan Y, Cheng L, Wang S, Zhang X, Lu G H 2019 Nucl. Fusion 59 026005Google Scholar
[18] Terentyev D, Dubinko V, Bakaev A, Zayachuk Y, van Renterghem W, Grigorev P 2014 Nucl. Fusion 54 042004Google Scholar
[19] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016Google Scholar
[20] Wang X X, Niu L L, Wang S 2017 J. Nucl. Mater. 487 158Google Scholar
[21] Fu B Q, Xu B, Lai W S, Yuan Y, Xu H Y, Li C, Jia Y Z, Liu W 2013 J. Nucl. Mater. 441 24Google Scholar
[22] 王欣欣, 张颖, 周洪波, 王金龙 2014 物理学报 63 046103Google Scholar
Wang X X, Zhang Y, Zhou H B, Wang J L 2014 Acta Phys. Sin. 63 046103Google Scholar
[23] 汪俊, 张宝玲, 周宇璐, 侯氢 2011 物理学报 60 106601Google Scholar
Wang J, Zhang B L, Zhou Y L, Hou Q 2011 Acta Phys. Sin. 60 106601Google Scholar
[24] 严六明, 朱素华 2013 分子动力学模拟的理论与实践 (北京: 科学出版社) 第6−12页
Yan L M, Zhu S H 2013 Theory and Practice of Molecular Dynamics Simulation (Beijing: Science Press) pp6−12 (in Chinese)
[25] Hou Q, Li M, Zhou Y, Cui J, Cui Z, Wang J 2013 Comput. Phys. Commun. 184 2091Google Scholar
[26] Fu B Q, Qiu M J, Cui J C, Li M, Hou Q 2018 J. Nucl. Mater. 508 278Google Scholar
[27] Fu B Q, Qiu M J, Cui J C, Li M, Wang J, Hou Q 2019 Nucl. Instrum. Meth. B 452 21Google Scholar
[28] Zhou Y L, Wang J, Hou Q, Deng A H 2014 J. Nucl. Mater. 446 49Google Scholar
[29] Chandrasekhar S 1943 Rev. Mod. Phys. 15 1Google Scholar
[30] Fernandez N, Ferro Y, Kato D 2015 Acta Mater. 94 307Google Scholar
[31] Ahlgren T, Bukonte L 2016 J. Nucl. Mater. 479 195Google Scholar
[32] Bonny G, Grigorev P, Terentyev D 2014 J. Phys.-Condens. Mat. 26 485001Google Scholar
[33] Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637Google Scholar
[34] Fu B Q, Liu W, Li Z L 2009 Appl. Surf. Sci. 255 8511Google Scholar
[35] Marinica M C, Ventelon L, Gilbert M R, Proville L, Dudarev S L, Marian J, Bencteux G, Willaime F 2013 J. Phys.-Condens. Mat. 25 395502Google Scholar
[36] Stukowski A 2010 Model. Simul. Mater. Sci. 18 015012Google Scholar
[37] Cheng G J, Fu B Q, Hou Q, Zhou X S, Wang J 2016 Chinese Phys. B 25 076602Google Scholar
[38] Fu B Q, Fitzgerald S P, Hou Q, Wang J, Li M 2017 Nucl. Instrum. Meth. B 393 169Google Scholar
Catalog
Metrics
- Abstract views: 8762
- PDF Downloads: 119
- Cited By: 0