Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of vacancy ordered structures, mechanical properties and electronic properties of ternary Hf-C-N system

Peng Jun-Hui Tikhonov Evgenii

Citation:

First-principles study of vacancy ordered structures, mechanical properties and electronic properties of ternary Hf-C-N system

Peng Jun-Hui, Tikhonov Evgenii
PDF
HTML
Get Citation
  • The thermal-mechanical properties of transition metal carbonitrides can be affected by the concentration and ordering of vacancies besides the C/N atomic ratio. However, there are few reports on the vacancy ordered structure of ternary transition metal carbonitrides. In the present paper, the first-principles method is used to study the vacancy ordered structures, mechanical properties, electronic properties and the effect of vacancies on the ternary Hf-C-N system. Firstly, the crystal structures of Hf-C-N system is examined by the first-principles and evolutionary algorithms implemented in USPEX under ambient pressure, and eight thermodynamical stable vacancy ordered structures are found, each of which has a rock-salt structure, and is also dynamical and mechanical stable, which are verified by the calculations of their phonon dispersion curves and elastic constants. The vacancies are occupied at the [Hf6] octahedral interstices, which replace the positions of non-metal atoms. Their crystallographic data such as space group, lattice constants are also predicted. To the best of our knowledge, there is no report on the Hf-C-N vacancy ordered structures and these structures investigated here in this work are all found for the first time. Then their mechanical properties are calculated. The Hf-C-N vacancy ordered structures all have very high bulk, shear and elastic modulus and hardness. It is found that except for C∶N = 1∶4, for the Hf-C-N system with the same C/N ratio the moduli, Vickers hardness values, and Pugh’s ratios decrease with the increase of the concentration of vacancy. However, the Vickers hardness of Hf6CN4 (the concentration of vacancy is equal to 1/6) is higher than that of Hf5CN4 (no vacancy), that is so-called vacancy hardening. Finally, the electronic density of states and the crystal orbital Hamilton populations are calculated. The chemical bonding of Hf-C-N vacancy ordered structure is analyzed, which is a mixture of covalence and metallic and is similar to that of binary transition metal carbides and nitrides. With the increase of the concentration of vacancy, the total bond strength decreases, and then the modulus decreases for Hf-C-N compound.
      Corresponding author: Tikhonov Evgenii, tikhonov.e@nwpu.edu.cn
    • Funds: Project supported by the Foreign Talents Introduction and Academic Exchange Program of China (Grant No. B08040)
    [1]

    Squire T, Marschall J 2010 J. Eur. Ceram. Soc. 30 2239Google Scholar

    [2]

    Opeka M M, Talmy I G, Zaykosk J A 2004 J. Mater. Sci. 39 5887Google Scholar

    [3]

    Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M, Salem J A 2002 J. Eur. Ceram. Soc. 22 2757Google Scholar

    [4]

    Ushakov SV, Navrotsky A 2012 J. Am. Ceram. Soc. 95 1463Google Scholar

    [5]

    Grill A, Aron P R 1983 Thin Solid Films 108 173Google Scholar

    [6]

    Helmersson U, Todorova S, Barnett S A, Sundgren J E, Markert L C, Greene J E 1987 J. Appl. Phys. 62 481Google Scholar

    [7]

    Mirkarimi P B, Hultman L, Barnett S A 1990 Appl. Phys. Lett. 57 2654Google Scholar

    [8]

    Veprek S, Veprek-Heijman M G J, Karvankova P, Prochazka J 2005 Thin Solid Films 476 1Google Scholar

    [9]

    Hultman L, Bareno J, Flink A, Soderberg H, Larsson K, Petrova V, Oden M, Greene J E, Petrov I 2007 Phys. Rev. B 75 155437Google Scholar

    [10]

    Shin C S, Gall D, Hellgren N, Patscheider J, Petrov I, Greene J E 2003 J. Appl. Phys. 93 6025Google Scholar

    [11]

    Jhi S H, Louie S G, Cohen M L, Ihm J 2001 Phys. Rev. Lett. 86 3348Google Scholar

    [12]

    Shin C S, Rudenja S, Gall D, Hellgren N, Lee T Y, Petrov I, Greene J E 2004 J. Appl. Phys. 95 356Google Scholar

    [13]

    Lee T, Ohmori K, Shin C S, Cahill D G, Petrov I, Greene J E 2005 Phys. Rev. B 71 144106Google Scholar

    [14]

    Holleck H 1986 J. Vac. Sci. Technol., A 4 2661Google Scholar

    [15]

    Yang Q, Lengauer W, Koch T, Scheerer M, Smid I 2000 J. Alloys Compd. 309 L5Google Scholar

    [16]

    Jhi S H, Ihm J, Louie S G, Cohen M L 1999 Nature 399 132Google Scholar

    [17]

    Feng W, Cui S, Hu H, Zhang G, Lü Z 2011 Physica B 406 3631Google Scholar

    [18]

    Balasubramanian K, Khare S V, Gall D 2018 Acta Mater. 152 175Google Scholar

    [19]

    Peng J, Tikhonov E 2021 Comput. Mater. Sci. 195 110464Google Scholar

    [20]

    Gusev A I, Rempel A A, Magerl A J 2001 Disorder and Order in Strongly Nonstoichiometric Compounds (Berlin Heidelberg: Springer) pp179−243

    [21]

    Gusev A I 1991 Physical Chemistry of Non stoichiometric Refractory Compounds (Moscow: Nauka) (in Russian)

    [22]

    Rudy E 1965 Ternary Phase Equilibria in Transition Metal-boron-carbon-silicon Systems. Part II. Ternary Systems. Vol. I. Ta-Hf-C system (Air Force Materials Laboratory, Wright-Patterson Air Force Base) pp38−60

    [23]

    Lipatnikov V N, Lengauer W, Ettmayer P, Keil E, Groboth G, Kny E 1997 J. Alloys Compd. 261 192Google Scholar

    [24]

    Yu X X, Thompson G B, Weinberger C R 2015 J. Eur. Ceram. Soc. 35 95Google Scholar

    [25]

    Yu X X, Weinberger C R, Thompson G B 2016 Comput. Mater. Sci. 112 318Google Scholar

    [26]

    Yu X X, Weinberger C R, Thompson G B 2014 Acta Mater. 80 341Google Scholar

    [27]

    Xie C, Liu N, Cheng X, Li D, Zeng Q 2016 J. Eur. Ceram. Soc. 36 3593Google Scholar

    [28]

    Xie C, Oganov A R, Li D, Debela T T, Liu N, Dong D, Zeng Q 2016 Phys. Chem. Chem. Phys. 18 12299Google Scholar

    [29]

    Zhang Y, Liu B, Wang J 2016 Sci. Rep. 5 18098Google Scholar

    [30]

    Gunda N S H, Van der Ven A 2018 Phys. Rev. Mater. 2 083602Google Scholar

    [31]

    Connolly J W D, Williams A R 1983 Phy. Rev. B 27 5169Google Scholar

    [32]

    Weinberger C R, Thompson G B 2018 J. Am. Ceram. Soc. 101 4401Google Scholar

    [33]

    Gusev A I, Rempel A A 1994 J. Phys. Chem. Solids 55 299Google Scholar

    [34]

    Yu S, Zeng Q, Oganov A R, Frapper G, Zhang L 2015 Phys. Chem. Chem. Phys. 17 11763Google Scholar

    [35]

    Yu S, Zeng Q, Oganov A R, Frapper G, Huang B, Niu H, Zhang L 2017 RSC Adv. 7 4697Google Scholar

    [36]

    樊涛, 曾庆丰, 于树印 2016 物理学报 65 118102Google Scholar

    Fan T, Zeng Q F, Yu S Y 2016 Acta Phys. Sin. 65 118102Google Scholar

    [37]

    Zhao Z L, Bao K, Tian F B, Duan D F, Liu B B, Cui T 2015 Phys. Chem. Chem. Phys. 17 22837Google Scholar

    [38]

    Li D, Tian F B, Duan D F, Bao K, Chu B, Sha X, Liu B B, Cui T 2014 RSC Adv. 4 10133Google Scholar

    [39]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704Google Scholar

    [40]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [41]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [42]

    Rudy E 1970 J. Less-Common Met. 20 49Google Scholar

    [43]

    Erniraliev A, Karimov I, Faizullaev F, Patiev M 1978 Kristallografiya 33 778

    [44]

    Karimov I, Em V T, Petrunin V F, Latergaus I S, Polishuk V S 1976 Materialy 12 1492

    [45]

    Em V T, Karimov I, Latergaus I S 1987 Metallofizika 9 113

    [46]

    Em V T, Tashmetov M Y 1996 Phys. Status Solidi B 198 571Google Scholar

    [47]

    Binder S, Lengauer W, Ettmayer P, Bauer J, Debuigne J, Bohn M 1995 J. Alloys Compd. 217 128Google Scholar

    [48]

    Hong Q J, van de Walle A 2015 Phys. Rev. B 92 020104Google Scholar

    [49]

    Buinevich V S, Nepapushev A A, Moskovskikh D O, Trusov G V, Kuskov K V, Vadchenko S G, Rogachev A S, Mukasyan A S 2020 Ceram. Int. 46 16068Google Scholar

    [50]

    Oganov A R 2011 Modern methods of crystal structure prediction (Weinheim: Wiley-VCR)

    [51]

    Kresse G, Furthmüller J 1996 Phys. Rev. B:Condens. Matter 54 11169Google Scholar

    [52]

    Blöchl P E 1994 Phys. Rev. B:Condens. Matter 50 17953Google Scholar

    [53]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [54]

    Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig, Germany: B. G. Teubner)

    [55]

    Reuss A 1929 Z. Angew. Math. Mech. 9 49Google Scholar

    [56]

    Hill R W 1952 Proc. Phys. Soc. London, Sect. A 65 349Google Scholar

    [57]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275Google Scholar

    [58]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [59]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [60]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [61]

    Dronskowski R, Bloechl P E 1993 J. Phys. Chem. 97 8617Google Scholar

    [62]

    Hinuma Y, Pizzi G, Kumagai Y, Oba F, Tanaka I 2017 Comput. Mater. Sci. 128 140Google Scholar

    [63]

    Cowley R A 1976 Phys. Rev. B 13 4877Google Scholar

  • 图 1  (a) 常压下, 三元Hf-HfC-HfN体系的能量凸包图, 黑色球表示热力学稳定结构, 其他为亚稳结构; (b) Hf-C-N空位有序结构的X射线衍射模拟图谱, 衍射源为Cu Kα射线

    Figure 1.  (a) Enthalpy convex-hull of ternary Hf-HfC-HfN system at ambient pressure. The black sphere indicates stable structure, and others are metastable structure. (b) The simulated X-ray diffractions of Hf-C-N vacancy ordered structures with a copper Kα X-ray source.

    图 2  Hf-C-N空位有序结构在某一晶面上的空位分布 (a) Hf6C4N-$C2 $/m (0 0 1); (b) Hf6C3N-$C2 $ (1 0 0); (c) Hf6C3N2-$C2 $/m (1 0 0); (d) Hf3CN-$C2 $ (1 0 0); (e) Hf6C2N3-$C2 $ (1 0 0); (f) Hf4CN2-Cmmm (0 0 1); (g) Hf6CN3-$C2 $/m (1 0 0); (h) Hf6CN4-$C2 $/m (0 0 1)

    Figure 2.  Vacancies on the crystallographic plane: (a) Hf6C4N-$C2 $/m (0 0 1); (b) Hf6C3N-$C2 $ (1 0 0); (c) Hf6C3N2-$C2 $/m (1 0 0); (d) Hf3CN-$C2 $ (1 0 0); (e) Hf6C2N3-$C2 $ (1 0 0); (f) Hf4CN2-Cmmm (0 0 1); (g) Hf6CN3-$C2 $/m (1 0 0); (h) Hf6CN4-$C2 $/m (0 0 1).

    图 3  Hf-C-N空位有序结构的声子谱曲线 (a) Hf6C4N-$C2 $/m; (b) Hf6C3N-$C2 $; (c) Hf6C3N2-$C2 $/m; (d) Hf3CN-$C2 $; (e) Hf6C2N3-$C2 $; (f) Hf4CN2-Cmmm; (g) Hf6CN3-$C2 $/m; (h) Hf6CN4-$C2 $/m

    Figure 3.  Phonon dispersion curves of (a) Hf6C4N-$C2 $/m, (b) Hf6C3N-$C2 $, (c) Hf6C3N2-$C2 $/m, (d) Hf3CN-$C2 $, (e) Hf6C2N3-$C2 $, (f) Hf4CN2-Cmmm, (g) Hf6CN3-$C2 $/m, (h) Hf6CN4-$C2 $/m. They are all dynamical stable because no imaginary frequencies were found in Brillouin zone.

    图 4  三元Hf-HfC-HfN体系的力学性质-组分相图 (a) 体模量(B); (b) 剪切模量(G ); (c) 弹性模量(E ); (d) 维氏硬度(HV); (e) Pugh比(G/B); (f) 泊松比(μ)

    Figure 4.  Mechanical properties-composition diagrams of ternary Hf-HfC-HfN system: (a) Bulk modulus (B); (b) shear modulus (G ); (c) elastic modulus (E ); (d) Vickers hardness (HV); (e) Pugh’s ratio (G/B); (f) Poisson’s ratio (μ).

    图 5  (a) Hf6C4N-$C2 $/m, (b) Hf6C3N-$C2 $, (c) Hf6C3N2-$C2 $/m, (d) Hf3CN-$C2 $, (e) Hf6C2N3-$C2 $, (f) Hf4CN2-Cmmm, (g) Hf6CN3-$C2 $/m和(h) Hf6CN4-$C2 $/m的态密度和分态密度; (i) Hf3CN和Hf2CN的总态密度对比; 其中Fermi能级位于0 eV

    Figure 5.  Density of state (DOS) and partial density of state (PDOS) normalized by per HfCxNy of (a) Hf6C4N-$C2 $/m, (b) Hf6C3N-$C2 $, (c) Hf6C3N2-$C2 $/m, (d) Hf3CN-$C2 $, (e) Hf6C2N3-$C2 $, (f) Hf4CN2-Cmmm, (g) Hf6CN3-$C2 $/m and (h) Hf6CN4-$C2 $/m; (i) the total DOS of Hf3CN and Hf2CN normalized by per HfCxNy. The Fermi level is at 0 eV.

    图 6  Hf-C-N化合物的晶体轨道哈密顿分布(–COHP), Fermi能级位于0 eV

    Figure 6.  Crystal orbital Hamilton populations (–COHP) of Hf-C-N compounds. The Fermi level is at 0 eV.

    表 1  Hf-C-N空位有序结构的空间群、晶格常数、反应焓ΔH (eV/atom)、Hf原子的配位数(CN) 和空位浓度(CV)

    Table 1.  Space group, lattice constants, the enthalpy of reaction ΔH (eV/atom), coordination number (CN) of Hf and the concentration of vacancy (CV) of Hf-C-N vacancy ordered structures.

    CompoundSpace groupLattice constants/ÅΔH/(eV·atom–1)CNCV
    Hf6C4N$C2 $/ma = 5.679, b = 9.799, c = 5.671, β = 70.6o–0.089951/6
    Hf6C3N$C2 $a = 5.658, b = 9.763, c = 9.262, β = 144.8o–0.098041/3
    Hf6C3N2$C2 $ma = 5.660, b = 9.783, c = 5.619, β = 109.6o–0.103851/6
    Hf3CN$C2 $a = 5.632, b = 9.705, c = 5.625, β = 109.8o–0.110741/3
    Hf6C2N3$C2 $a = 5.624, b = 9.725, c = 5.602, β = 109.6o–0.104751/6
    Hf4CN2Cmmma = 6.427, b = 9.147, c = 3.235–0.10824/51/4
    Hf6CN3$C2 $/ma = 5.592, b = 9.658, c = 6.455, β = 125.3o–0.089441/3
    Hf6CN4$C2 $/ma = 5.580, b = 9.681, c = 5.587, β = 70.3o–0.081551/6
    DownLoad: CSV

    表 2  Hf-C-N空位有序结构的弹性常数Cij (单位: GPa)

    Table 2.  Calculated elastic constants Cij (in GPa) of Hf-C-N vacancy ordered structures.

    CompoundsC11C22C33C44C55C66C12C13C23
    Hf6C4N-$C2 $/m414.3406.6415.6158.0170.6148.794.1116.1104.5
    Hf6C3N-$C2 $358.5362.8352.2100.0114.3132.387.598.391.6
    Hf6C3N2-$C2 $/m414.6417.4407.6152.2157.6147.8111.9115.0116.3
    Hf3CN-$C2 $354.5363.5348.790.6103.6128.7102.1109.5101.3
    Hf6C2N3-$C2 $409.7418.7418.1149.6160.2148.9123.4122.9126.5
    Hf4CN2-Cmmm373.4368.8406.8142.2133.1135.8146.4112.0124.4
    Hf6CN3-$C2 $/m361.1358.4351.784.999.8124.9108.1121.7114.2
    Hf6CN4-$C2 $/m401.2414.1403.5146.5157.2139.8134.0139.9147.8
    DownLoad: CSV

    表 3  Hf-C-N空位有序结构和HfC1–xNx[19]的力学性质—体模量(B)、剪切模量(G )、弹性模量(E )、泊松比(μ)、Pugh比(G/B)、维氏硬度(HV)等

    Table 3.  Mechanical properties—bulk modulus (B), shear modulus (G ), elastic modulus (E ), Poisson’s ratio (μ), Pugh’s ratio (G/B), Vickers hardness (HV) of Hf-C-N vacancy ordered structures and HfC1–xNx[19].

    CompoundB /GPaG /GPaE /GPaμG/BHV /GPa
    Hf6C4N229.0140.8350.60.24490.614817.5
    Hf5C4N[19]260.6201.3480.30.19280.772729.9
    Hf6C3N180.9121.5297.90.22560.671717.8
    Hf4C3N[19]262.2202.1482.40.19340.770729.9
    Hf6C3N2214.0151.1366.90.21430.705922.1
    Hf3CN188.0113.4283.30.24890.603114.6
    Hf2CN[19]268.1198.5477.60.20310.740328.1
    Hf6C2N3221.3149.7366.60.22390.676620.7
    Hf4CN2212.7132.8329.70.24170.624217.1
    Hf3CN2[19]272.8185.1452.80.22330.678623.9
    Hf6CN3195.4108.9275.60.26500.557412.7
    Hf4CN3[19]276.2179.6442.80.23280.650422.2
    Hf6CN4207.2156.1374.40.19890.753524.6
    Hf5CN4[19]279.0171.5427.00.24490.614720.0
    DownLoad: CSV

    表 4  Hf-C-N化合物的晶体轨道哈密顿分布的积分值(–ICOHP)

    Table 4.  Integrated crystal orbital Hamilton populations (–ICOHP) of Hf-C-N compounds.

    Compound–ICOHPCompound–ICOHP
    Hf—CHf—NHf—HfHf—CHf—NHf—Hf
    Hf6C4N3.3733.5670.529Hf6C3N23.1812.9900.571
    Hf5C4N3.3733.0330.459Hf4CN23.4743.1110.650
    Hf6C3N3.3503.0670.718Hf3CN23.5513.0910.541
    Hf4C3N3.3193.0290.454Hf6CN33.4083.2110.570
    Hf6C3N23.6073.1030.530Hf4CN33.3213.1590.520
    Hf3CN3.2773.2110.737Hf6CN43.6753.1790.591
    Hf2CN3.4832.8020.490Hf5CN43.3193.0170.500
    DownLoad: CSV
  • [1]

    Squire T, Marschall J 2010 J. Eur. Ceram. Soc. 30 2239Google Scholar

    [2]

    Opeka M M, Talmy I G, Zaykosk J A 2004 J. Mater. Sci. 39 5887Google Scholar

    [3]

    Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M, Salem J A 2002 J. Eur. Ceram. Soc. 22 2757Google Scholar

    [4]

    Ushakov SV, Navrotsky A 2012 J. Am. Ceram. Soc. 95 1463Google Scholar

    [5]

    Grill A, Aron P R 1983 Thin Solid Films 108 173Google Scholar

    [6]

    Helmersson U, Todorova S, Barnett S A, Sundgren J E, Markert L C, Greene J E 1987 J. Appl. Phys. 62 481Google Scholar

    [7]

    Mirkarimi P B, Hultman L, Barnett S A 1990 Appl. Phys. Lett. 57 2654Google Scholar

    [8]

    Veprek S, Veprek-Heijman M G J, Karvankova P, Prochazka J 2005 Thin Solid Films 476 1Google Scholar

    [9]

    Hultman L, Bareno J, Flink A, Soderberg H, Larsson K, Petrova V, Oden M, Greene J E, Petrov I 2007 Phys. Rev. B 75 155437Google Scholar

    [10]

    Shin C S, Gall D, Hellgren N, Patscheider J, Petrov I, Greene J E 2003 J. Appl. Phys. 93 6025Google Scholar

    [11]

    Jhi S H, Louie S G, Cohen M L, Ihm J 2001 Phys. Rev. Lett. 86 3348Google Scholar

    [12]

    Shin C S, Rudenja S, Gall D, Hellgren N, Lee T Y, Petrov I, Greene J E 2004 J. Appl. Phys. 95 356Google Scholar

    [13]

    Lee T, Ohmori K, Shin C S, Cahill D G, Petrov I, Greene J E 2005 Phys. Rev. B 71 144106Google Scholar

    [14]

    Holleck H 1986 J. Vac. Sci. Technol., A 4 2661Google Scholar

    [15]

    Yang Q, Lengauer W, Koch T, Scheerer M, Smid I 2000 J. Alloys Compd. 309 L5Google Scholar

    [16]

    Jhi S H, Ihm J, Louie S G, Cohen M L 1999 Nature 399 132Google Scholar

    [17]

    Feng W, Cui S, Hu H, Zhang G, Lü Z 2011 Physica B 406 3631Google Scholar

    [18]

    Balasubramanian K, Khare S V, Gall D 2018 Acta Mater. 152 175Google Scholar

    [19]

    Peng J, Tikhonov E 2021 Comput. Mater. Sci. 195 110464Google Scholar

    [20]

    Gusev A I, Rempel A A, Magerl A J 2001 Disorder and Order in Strongly Nonstoichiometric Compounds (Berlin Heidelberg: Springer) pp179−243

    [21]

    Gusev A I 1991 Physical Chemistry of Non stoichiometric Refractory Compounds (Moscow: Nauka) (in Russian)

    [22]

    Rudy E 1965 Ternary Phase Equilibria in Transition Metal-boron-carbon-silicon Systems. Part II. Ternary Systems. Vol. I. Ta-Hf-C system (Air Force Materials Laboratory, Wright-Patterson Air Force Base) pp38−60

    [23]

    Lipatnikov V N, Lengauer W, Ettmayer P, Keil E, Groboth G, Kny E 1997 J. Alloys Compd. 261 192Google Scholar

    [24]

    Yu X X, Thompson G B, Weinberger C R 2015 J. Eur. Ceram. Soc. 35 95Google Scholar

    [25]

    Yu X X, Weinberger C R, Thompson G B 2016 Comput. Mater. Sci. 112 318Google Scholar

    [26]

    Yu X X, Weinberger C R, Thompson G B 2014 Acta Mater. 80 341Google Scholar

    [27]

    Xie C, Liu N, Cheng X, Li D, Zeng Q 2016 J. Eur. Ceram. Soc. 36 3593Google Scholar

    [28]

    Xie C, Oganov A R, Li D, Debela T T, Liu N, Dong D, Zeng Q 2016 Phys. Chem. Chem. Phys. 18 12299Google Scholar

    [29]

    Zhang Y, Liu B, Wang J 2016 Sci. Rep. 5 18098Google Scholar

    [30]

    Gunda N S H, Van der Ven A 2018 Phys. Rev. Mater. 2 083602Google Scholar

    [31]

    Connolly J W D, Williams A R 1983 Phy. Rev. B 27 5169Google Scholar

    [32]

    Weinberger C R, Thompson G B 2018 J. Am. Ceram. Soc. 101 4401Google Scholar

    [33]

    Gusev A I, Rempel A A 1994 J. Phys. Chem. Solids 55 299Google Scholar

    [34]

    Yu S, Zeng Q, Oganov A R, Frapper G, Zhang L 2015 Phys. Chem. Chem. Phys. 17 11763Google Scholar

    [35]

    Yu S, Zeng Q, Oganov A R, Frapper G, Huang B, Niu H, Zhang L 2017 RSC Adv. 7 4697Google Scholar

    [36]

    樊涛, 曾庆丰, 于树印 2016 物理学报 65 118102Google Scholar

    Fan T, Zeng Q F, Yu S Y 2016 Acta Phys. Sin. 65 118102Google Scholar

    [37]

    Zhao Z L, Bao K, Tian F B, Duan D F, Liu B B, Cui T 2015 Phys. Chem. Chem. Phys. 17 22837Google Scholar

    [38]

    Li D, Tian F B, Duan D F, Bao K, Chu B, Sha X, Liu B B, Cui T 2014 RSC Adv. 4 10133Google Scholar

    [39]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704Google Scholar

    [40]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [41]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [42]

    Rudy E 1970 J. Less-Common Met. 20 49Google Scholar

    [43]

    Erniraliev A, Karimov I, Faizullaev F, Patiev M 1978 Kristallografiya 33 778

    [44]

    Karimov I, Em V T, Petrunin V F, Latergaus I S, Polishuk V S 1976 Materialy 12 1492

    [45]

    Em V T, Karimov I, Latergaus I S 1987 Metallofizika 9 113

    [46]

    Em V T, Tashmetov M Y 1996 Phys. Status Solidi B 198 571Google Scholar

    [47]

    Binder S, Lengauer W, Ettmayer P, Bauer J, Debuigne J, Bohn M 1995 J. Alloys Compd. 217 128Google Scholar

    [48]

    Hong Q J, van de Walle A 2015 Phys. Rev. B 92 020104Google Scholar

    [49]

    Buinevich V S, Nepapushev A A, Moskovskikh D O, Trusov G V, Kuskov K V, Vadchenko S G, Rogachev A S, Mukasyan A S 2020 Ceram. Int. 46 16068Google Scholar

    [50]

    Oganov A R 2011 Modern methods of crystal structure prediction (Weinheim: Wiley-VCR)

    [51]

    Kresse G, Furthmüller J 1996 Phys. Rev. B:Condens. Matter 54 11169Google Scholar

    [52]

    Blöchl P E 1994 Phys. Rev. B:Condens. Matter 50 17953Google Scholar

    [53]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [54]

    Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig, Germany: B. G. Teubner)

    [55]

    Reuss A 1929 Z. Angew. Math. Mech. 9 49Google Scholar

    [56]

    Hill R W 1952 Proc. Phys. Soc. London, Sect. A 65 349Google Scholar

    [57]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275Google Scholar

    [58]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [59]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [60]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [61]

    Dronskowski R, Bloechl P E 1993 J. Phys. Chem. 97 8617Google Scholar

    [62]

    Hinuma Y, Pizzi G, Kumagai Y, Oba F, Tanaka I 2017 Comput. Mater. Sci. 128 140Google Scholar

    [63]

    Cowley R A 1976 Phys. Rev. B 13 4877Google Scholar

  • [1] Ji Chen. Nuclear structure effects to atomic Lamb shift and hyperfine splitting. Acta Physica Sinica, 2024, 73(20): 202101. doi: 10.7498/aps.73.20241063
    [2] Cui Zi-Chun, Yang Mo-Han, Ruan Xiao-Peng, Fan Xiao-Li, Zhou Feng, Liu Wei-Min. High-throughput calculation of interfacial friction of two-dimensional material. Acta Physica Sinica, 2023, 72(2): 026801. doi: 10.7498/aps.72.20221676
    [3] Li Jun, Liu Li-Sheng, Xu Shuang, Zhang Jin-Yong. Mechanical, electronic properties and deformation mechanisms of Ti3B4 under uniaxial compressions: a first-principles calculation. Acta Physica Sinica, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [4] Huang Rui, Li Chun, Jin Wei, Georgios Lefkidis, Wolfgang Hübner. Ultrafast spin dynamics in double-magnetic-center endohedral fullerene Y2C2@C82-C2(1). Acta Physica Sinica, 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [5] Fu Bao-Qin, Hou Qing, Wang Jun, Qiu Ming-Jie, Cui Jie-Chao. Molecular dynamics study of trapping and detrapping process of hydrogen in tungsten vacancy. Acta Physica Sinica, 2019, 68(24): 240201. doi: 10.7498/aps.68.20190701
    [6] Sha Sha, Wang Wei-Li, Wu Yu-Hao, Wei Bing-Bo. Dendrite growth and Vickers microhardness of Co7Mo6 intermetallic compound under large undercooling condition. Acta Physica Sinica, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [7] Wang Xin-Xin, Zhang Ying, Zhou Hong-Bo, Wang Jin-Long. Effects of niobium on helium behaviors in tungsten:a first-principles investigation. Acta Physica Sinica, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [8] Niu Hai-Bo, Chen Guang-De, Wu Ye-Long, Ye Hong-Gang. Influence of vacancy on spontaneous polarization of wurtzite AlN: a maximally localized Wannierfunction study. Acta Physica Sinica, 2014, 63(16): 167701. doi: 10.7498/aps.63.167701
    [9] Li Jun-Jun, Zhao Xue-Ping, Tao Qiang, Huang Xiao-Qing, Zhu Pin-Wen, Cui Tian, Wang Xin. Characterization of TiB2 synthesized at high pressure and high temperature. Acta Physica Sinica, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [10] Xu Shuang, Guo Ya-Fang. Generation and evolution of vacancy-type defects in nano-Cu films during plastic deformation by means molecular dynamics. Acta Physica Sinica, 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [11] Wei Zhe, Yuan Jian-Mei, Li Shun-Hui, Liao Jian, Mao Yu-Liang. Density functional study on the electronic and magnetic properties of two-dimensional hexagonal boron nitride containing vacancy. Acta Physica Sinica, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [12] Li Yu-Bo, Wang Xiao, Dai Ting-Ge, Yuan Guang-Zhong, Yang Hang-Sheng. First-principle study of vacancy-induced cubic boron nitride electronic structure and optical propertiy changes. Acta Physica Sinica, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [13] Jin Shuo, Sun Lu. Stability of hydrogen in tungsten with carbon impurity: a first-principles study. Acta Physica Sinica, 2012, 61(4): 046104. doi: 10.7498/aps.61.046104
    [14] Yuan Peng-Fei, Zhu Wen-Jun, Xu Ji-An, Liu Shao-Jun, Jing Fu-Qian. High pressure phase transition and phonon-dispersion relations of BeO calculated by first-principles method. Acta Physica Sinica, 2010, 59(12): 8755-8761. doi: 10.7498/aps.59.8755
    [15] Li Jin, Gui Gui, Sun Li-Zhong, Zhong Jian-Xin. Structure transition of two-dimensional hexagonal BN under large uniaxial strain. Acta Physica Sinica, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [16] Wang Chao-Ying, Wang Zhen-Qing, Meng Qing-Yuan. Comparative study of the first-principles and empirical potential simulation of vacancies in silicon. Acta Physica Sinica, 2010, 59(5): 3370-3376. doi: 10.7498/aps.59.3370
    [17] Gu Juan, Wang Shan-Ying, Gou Bing-Cong. The geometrical structure, electronic structure and magnetism of bimetallic AunM2 (n=1,2; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) clusters. Acta Physica Sinica, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [18] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [19] Zhang Chao, Wang Yong-Liang, Yan Chao, Zhang Qing-Yu. Numerical simulation of the influence of substitutional impurity on the interaction between low-energy Pt atoms and Pt(111) surface. Acta Physica Sinica, 2006, 55(6): 2882-2891. doi: 10.7498/aps.55.2882
    [20] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
Metrics
  • Abstract views:  6369
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  01 February 2021
  • Accepted Date:  28 June 2021
  • Available Online:  15 August 2021
  • Published Online:  05 November 2021

/

返回文章
返回