Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study on simplified reaction set of ground state species in CO2 discharges under Martian atmospheric conditions

Zhang Tai-Heng Wang Xu-Cheng Zhang Yuan-Tao

Citation:

Numerical study on simplified reaction set of ground state species in CO2 discharges under Martian atmospheric conditions

Zhang Tai-Heng, Wang Xu-Cheng, Zhang Yuan-Tao
PDF
HTML
Get Citation
  • The exploration of Mars has attracted increasing interest in these years. The experiments and simulations show that strong electric field triggered by the dust storms in the Martian atmosphere may cause CO2 discharge. Studies on this phenomenon will not only help deepen our comprehension on the evolution of Martian surface, but also provide a possibility to realize the in-situ oxygen generation on Mars based on plasma chemistry. In this paper, a zero-dimensional global model is used to simplify the complicated description of CO2 chemical kinetics, therefore a reduced chemistry can be obtained for detailed numerical simulation in the near future. At the beginning of simplification, the graph theoretical analysis is used to pre-treat the original model by exploring the relationship between reacting species. Through the study of connectivity and the topological network, species such as O2, e, and CO prove to be important in the information transmission of the network. While gaining a clearer understanding of the chemistry model, dependence analysis will be used to investigate numerical simulation results. In this way a directed relation diagram can be obtained, where the influence between different species is quantitively explained in terms of numerical solutions. Users could keep different types of species correspondingly according to their own needs, and in this paper, some species with low activeness such as C2O, $ {\mathrm{O}}_{5}^{+} $, $ {\mathrm{O}}_{4}^{-} $ and species with uncertainties such as $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $, $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ are removed from the original model. As for the reduction of specific reactions among species, the reaction proportion analysis based on the calculation of reaction rates is used to obtain the contribution of each reaction to the entire process of CO2 discharge, through which the important reactions can be selected. Finally, a simplified chemistry model of CO2 discharge based on Martian atmospheric conditions, including 16 species and 67 reactions, is established. The numerical simulations show that the trends of species densities based on the simplified chemistry model are highly consistent with those based on the original one, and considerations about the CO2 conversion and the energy efficiency are also in line with expectations, which can help deepen the understanding of the essential process of CO2 discharge under Martian atmospheric conditions. In addition, the quantitative results of the relationship between reactive species will lay a theoretical foundation for the accurate analysis of various products in Martian dust storm discharges and the realization of Mars in-situ oxygen generation technology based on plasma chemistry.
      Corresponding author: Zhang Yuan-Tao, ytzhang@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975142)
    [1]

    史建魁, 张仲谋, 刘振兴 1997 地球物理学进展 04 98Google Scholar

    Shi J K, Zhang Z M, Liu Z X 1997 Prog. Geophys. 04 98Google Scholar

    [2]

    Thomas P, Gierasch P J 1985 Science 230 175Google Scholar

    [3]

    Sullivan R, Banfield D, Bell J F 2005 Nature 436 58Google Scholar

    [4]

    Bougher S W, Murphy J, Haberle R M 1997 Adv. Space Res. 19 1255Google Scholar

    [5]

    Lämmel M, Kroy K 2017 Phys. Rev. E 96 052906Google Scholar

    [6]

    Read P L, Lewis S R, Mulholland D P 2015 Rep. Prog. Phys. 78 125901Google Scholar

    [7]

    Barth E L, Farrell W M, Rafkin S C R 2016 Icarus 268 253Google Scholar

    [8]

    Esposito F, Molinaro R, Popa C I 2016 Geophys. Res. Lett. 43 5501Google Scholar

    [9]

    Schmidt D S, Schmidt R A, Dent J D 1998 J. Geophys. Res. 103 8997Google Scholar

    [10]

    Melnik O, Parrot M 1998 J. Geophys. Res. 103 29107Google Scholar

    [11]

    Eden H F, Vonnegut B 1973 Science 180 962Google Scholar

    [12]

    Farrell W M, McLain J L, Collier M R 2015 Icarus 254 333Google Scholar

    [13]

    Farrell W M, McLainb J L, Collier M R 2017 Icarus 297 90Google Scholar

    [14]

    Hecht M, Hoffman J, Rapp D 2021 Space Sci. Rev. 217 9Google Scholar

    [15]

    Keudell A V, Volker S 2017 Plasma Sources Sci. Technol. 26 113001Google Scholar

    [16]

    Guerra V, Silva T, Ogloblina P 2017 Plasma Sources Sci. Technol. 26 11LT01Google Scholar

    [17]

    Bogaerts A, Kozak T, Laer K V 2015 Faraday Discuss. 183 217Google Scholar

    [18]

    Kozák T, Bogaerts A 2014 Plasma Sources Sci. Technol. 23 045004Google Scholar

    [19]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C 116 23257Google Scholar

    [20]

    Berthelot A, Bogaerts A 2017 J. Phys. Chem. C 121 8236Google Scholar

    [21]

    Sun R, Wang H X, Bogaerts A 2020 Plasma Sources Sci. Technol. 29 025012Google Scholar

    [22]

    Hurlbatt A, Gibson A, Schröter S 2017 Plasma Processes Polym. 14 1600138Google Scholar

    [23]

    Lazarou C, Belmonte T, Chiper A 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [24]

    Wang W, Berthelot A, Kolev S 2016 Plasma Sources Sci. Technol. 25 065012Google Scholar

    [25]

    Takana H, Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001Google Scholar

    [26]

    Dubin D H E, Jin D Z 2003 Phys. Plasmas 10 1338Google Scholar

    [27]

    Kelly S, Golda J, Turner M 2015 J. Phys. D:Appl. Phys. 48 444002Google Scholar

    [28]

    Iqbal M M, Stallard C P, Dowling D P, Turner M M 2014 Plasma Processes Polym. 12 201Google Scholar

    [29]

    Stagni A, Frassoldati A, Cuoci A 2015 Combust. Flame 163 382Google Scholar

    [30]

    Rabitz H, Kramer M, Dacol D 2003 Annu. Rev. Phys. Chem. 34 419Google Scholar

    [31]

    Tomlin A S, Pilling M J, Meriting J H 1995 Ind. Eng. Chem. Res. 34 3749Google Scholar

    [32]

    Brown N J, And G L, Koszykowski M L 2015 Int. J. Chem. Kinet. 29 393Google Scholar

    [33]

    Lehmann R 2004 J. Atmos. Chem. 47 45Google Scholar

    [34]

    Strogatz S, Steven H 2003 SIAM Rev. 45 167Google Scholar

    [35]

    Kolaczyk E D 2009 Statistical Analysis of Network Data: Methods and Models (New York: Springer) pp79−120

    [36]

    Boccaletti S, Bianconi G, Criado R 2014 Phys. Rep. 544 1Google Scholar

    [37]

    Estrada E, Hatano N, Benzi M 2012 Phys. Rep. 514 89Google Scholar

    [38]

    Klamt S, Hädicke O, Kamp A V 2014 Large-Scale Networks in Engineering and Life Sciences (Cham: Birkhäuser Basel) pp263−316

    [39]

    Sakai O, Nobuto K, Miyagi S 2015 AIP Adv. 5 107140Google Scholar

    [40]

    Mizui Y, Kojima T, Miyagi S 2017 Symmetry 9 309Google Scholar

    [41]

    Lu T F, Law C K 2005 Proc. Combust. Inst. 30 1333Google Scholar

    [42]

    Lu T F, Law C K 2006 Combust. Flame 146 472Google Scholar

    [43]

    Snoeckx R, Bogaerts A 2017 Chem. Soc. Rev. 46 5805Google Scholar

    [44]

    Aerts R, Somers W, Bogaerts A 2015 ChemSusChem 8 702Google Scholar

    [45]

    Zhang Y T, Wang Y H 2018 Phys. Plasmas 25 023509Google Scholar

    [46]

    高书涵, 王绪成, 张远涛 2020 物理学报 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [47]

    Bogaerts A, Wang W Z 2016 Plasma Sources Sci. Technol. 25 055016Google Scholar

    [48]

    Ponduri S, Becker M M, Welzel S 2016 J. Appl. Phys. 119 093301Google Scholar

    [49]

    Stijn H, Luca M M, Giorgio D 2019 J. Phys. Chem. C 123 12104Google Scholar

    [50]

    Phelps A V www.lxcat.net [2020-3-21]

    [51]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [52]

    Beuthe T G, Chang J S 1997 Jpn. J. Appl. Phys. 36 4997Google Scholar

    [53]

    Eliasson B, Kogelschatz U 1986 Brown Boveri Research Report KLR 86-11C

    [54]

    Roberson G, Roberto M, Verboncoeur J 2015 Braz. J. Phys. 37 457Google Scholar

    [55]

    Spencer L F 2012 Ph. D. Dissertation (Ann Arbor: University of Michigan)

    [56]

    Berthelot A, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 115002Google Scholar

    [57]

    Wang W, Snoeckx R, Zhang X 2018 J. Phys. Chem. C 122 8704Google Scholar

    [58]

    Berthelot A, Bogaerts A 2016 Plasma Sources Sci. Technol. 25 045022Google Scholar

    [59]

    Moss M S 2017 Plasma Sources Sci. Technol. 26 035009Google Scholar

    [60]

    Harder N D, Bekerom D C M V D, Al R S 2017 Plasma Processes Polym. 14 1600120Google Scholar

    [61]

    Vermeiren V, Bogaerts A 2018 J. Phys. Chem. C 122 25869Google Scholar

    [62]

    Cheng C, Ma M, Zhang Y, Liu D 2020 J. Phys. D: Appl. Phys. 53 144001Google Scholar

    [63]

    Li J, Fang C, Chen J, Li H P 2021 J. Appl. Phys. 129 133302Google Scholar

  • 图 1  地球大气环境下CO2放电转化率对比

    Figure 1.  Comparations of CO2 discharge conversion in the earth atmosphere.

    图 2  各粒子所参与的反应数目

    Figure 2.  Number of reactions that each species participates in

    图 3  可通过反应直接建立联系的粒子种类数目

    Figure 3.  Number of species that can be directly connected by reactions.

    图 4  各粒子度数 (a)出度、入度的条形堆积图; (b)粒子在出度-入度空间的分布情况

    Figure 4.  Degrees of species: (a) Stacked bars of in-degree and out-degrees; (b) distribution of species in the out-degree-in-degree space.

    图 5  粒子网络拓扑图

    Figure 5.  Species network topology.

    图 6  粒子在临近-相间中心性空间的分布图

    Figure 6.  Distribution of species in the closeness-betweenness centrality space.

    图 7  粒子在集聚系数-度数空间的分布

    Figure 7.  Distribution of species in the clustering coefficient-degree space.

    图 8  基于CO2的各中性粒子间的相互关系有向图

    Figure 8.  Directed relation graph among neutral species based on CO2.

    图 9  基于e的各带电粒子间的相互关系有向图

    Figure 9.  Directed relation graph among charged species based on electrons.

    图 10  初始集合所有粒子间相互关系有向图

    Figure 10.  Directed relation graph of the original model among all species.

    图 11  $ {\mathrm{C}\mathrm{O}}_{2}^{+} $在所参与的各项反应中的反应速率

    Figure 11.  Reaction rates of $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ in each reaction involved.

    图 12  初始集合中由碰撞截面描述的电子碰撞电离反应的比重

    Figure 12.  Proportion of electron impact ionization reactions described by collision cross sections in the original model.

    图 13  初始集合(实线)与简化集(虚线)关于粒子浓度的数值模拟结果比较 (a)中性粒子; (b)正离子; (c)电子与负离子

    Figure 13.  Comparison of the numerical simulation results of particle concentration between the original model (solid line) and the simplified model (dashed line): (a) Neutrals; (b) positive ions; (c) electron and negative ions.

    图 14  3 ms时引起(a) CO和(b) O2浓度变化的主要反应

    Figure 14.  Main reactions at 3 ms which cause density changes of (a) CO and (b) O2.

    图 15  作为比能量输入的函数, 简化集合与初始集合关于转化率与能量方面的比较 (a) CO2转化率; (b)能量效率; (c)能量损耗

    Figure 15.  As a function of SEI, comparations of original and simplified model on (a) conversion of CO2, (b) energy efficiency, (c) energy cost.

    表 A1  初始反应集合中的粒子构成

    Table A1.  Composition of particles in the original model.

    初始集合粒子构成
    中性粒子CO2, CO, C, O, O2, O3, C2O
    正离子$ {\mathrm{C}\mathrm{O}}_{4}^{+} $, $ {\mathrm{C}\mathrm{O}}_{2}^{+} $, CO+, C+, O+, $ {\mathrm{O}}_{2}^{+} $, $ {\mathrm{O}}_{4}^{+} $,
    $ {\mathrm{O}}_{5}^{+} $, $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $, $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $, $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $
    负离子$ {\mathrm{C}\mathrm{O}}_{4}^{-} $, $ {\mathrm{C}\mathrm{O}}_{3}^{-} $, O, $ {\mathrm{O}}_{2}^{-} $, $ {\mathrm{O}}_{3}^{-} $, $ {\mathrm{O}}_{4}^{-} $
    DownLoad: CSV

    表 A2  初始集合中由碰撞截面描述的电子碰撞反应

    Table A2.  Electron impact reactions described by collision cross sections in the original model.

    序号反应文献
    (X01)e + CO2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + 2e[50]
    (X02)e + CO2 $ \Rightarrow $ CO + O + e[50]
    (X03)e + CO2 $ \Rightarrow $ CO + O[50]
    (X04)e + CO2 $ \Rightarrow $ 2e + O + CO+[50]
    (X05)e + CO2 $ \Rightarrow $ 2e + CO + O+[50]
    (X06)e + CO2 $ \Rightarrow $ 2e + C+ + O2[50]
    (X07)e + CO2 $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + C + 2e[51, 52]
    (X08)e + CO $ \Rightarrow $ C + O[50]
    (X09)e + CO $ \Rightarrow $ e + C + O[50]
    (X10)e + CO $ \Rightarrow $ 2e + CO+[50]
    (X11)e + CO $ \Rightarrow $ 2e + C + O+[50]
    (X12)e + CO $ \Rightarrow $ 2e + C+ + O[50]
    (X13)e + O3 $ \Rightarrow $ $ {{\mathrm{O}}_{2}^{-}}^{-} $ + O[50]
    (X14)e + O3 $ \Rightarrow $ O2 + O[50]
    (X15)e + O3 $ \Rightarrow $ O + O2 + e[53]
    (X16)e + O3 $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + O + 2e[53]
    (X17)e + O3 $ \Rightarrow $ O+ + O + O + e[53]
    (X18)e + O2 $ \Rightarrow $ 2 O + e[50]
    (X19)e + O2 $ \Rightarrow $ O + O[50]
    (X20)e + O2 $ \Rightarrow $ 2e + $ {\mathrm{O}}_{2}^{+} $[50]
    (X21)e + O2 $ \Rightarrow $ 2e + O + O+[50]
    (X22)e + O2 $ \Rightarrow $ e + O+ + O[50, 54]
    (X23)e + O $ \Rightarrow $ 2e + O+[50]
    (X24)e + C $ \Rightarrow $ 2e + C+[50]
    DownLoad: CSV

    表 A5  初始集合中的离子-中性和离子-离子反应, 其中Tg为气体温度, 单位是K, 速率系数的单位在二体或三体反应中分别是m3/s或m6/s

    Table A5.  Ion-neutral and ion-ion reactions in the original model. Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (I01)O + CO2 $ \Rightarrow$ O + CO2 + e4.0 × 10–18[48]
    (I02)O + CO2 + CO $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO1.5 × 10–40[61]
    (I03)O + CO2 + O2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O23.1 × 10–40[61]
    (I04)O + CO2 + CO2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO29.0 × 10–41[52]
    (I05)$ {\mathrm{O}}_{2}^{-} $ + CO2 + O2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O24.7 × 10–41[52]
    (I06)$ {\mathrm{O}}_{3}^{-} $+ CO2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O25.5 × 10–16[18]
    (I07)$ {\mathrm{O}}_{4}^{-} $ + CO2 $ \Rightarrow$ O2 + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $4.8 × 10–16[18]
    (I08)O+ + CO2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO9.4 × 10–16[18]
    (I09)O+ + CO2 $ \Rightarrow$ O + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $4.5 × 10–16[18]
    (I10)C+ + CO2 $ \Rightarrow$ CO+ + CO1.1 × 10–15[18]
    (I11)$ {\mathrm{O}}_{2}^{+} $ + CO2 + M $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ + M2.3 × 10–41[18]
    (I12)$ {\mathrm{O}}_{5}^{+} $ + CO2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ + O31.0 × 10–17[52]
    (I13)CO+ + CO2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO1.0 × 10–15[56]
    (I14)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO2 + M $ \Rightarrow$ $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + M3.0 × 10–40[18]
    (I15)O+ + CO $ \Rightarrow$ O + CO+4.9 × 10–18(Tg/298)0.5exp(–4580/Tg)[18]
    (I16)C+ + CO $ \Rightarrow$ CO+ + C5.0 × 10–19[18]
    (I17)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + CO $ \Rightarrow$ CO2 + $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $1.1 × 10–15[18]
    (I18)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + CO $ \Rightarrow$ CO2 + $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $9.0 × 10–16[18]
    (I19)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + CO + M $ \Rightarrow$ CO2 + $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + M2.6 × 10–38[18]
    (I20)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + CO + M $ \Rightarrow$ CO2 + $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + M4.2 × 10–38[18]
    (I21)O + CO $ \Rightarrow$ CO2 + e5.5 × 10–16[44]
    (I22)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO $ \Rightarrow$ 2CO2 + e5.0 × 10–19[58]
    (I23)$ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow$ CO+ + O5.2 × 10–17[18]
    (I24)$ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow$ C+ + O25.2 × 10–17[18]
    (I25)CO+ + C $ \Rightarrow$ CO + C+1.1 × 10–16[18]
    (I26)O + C $ \Rightarrow$ CO + e5.0 × 10–16[57]
    (I27)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO1.638 × 10–16[52]
    (I28)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow$ CO2 + O+9.62 × 10–17[18]
    (I29)CO+ + O $ \Rightarrow$ CO + O+1.4 × 10–16[18]
    (I30)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O21.1 × 10–16[18]
    (I31)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ CO2 + O2 + O1.4 × 10–17[18]
    (I32)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ CO2 + $ {\mathrm{O}}_{3}^{-} $1.4 × 10–16[18]
    (I33)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ CO2 + $ {\mathrm{O}}_{2}^{-} $8.0 × 10–17[58]
    (I34)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO26.4 × 10–17[52]
    (I35)CO+ + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO1.2 × 10–16[18]
    (I36)C+ + O2 $ \Rightarrow$ CO + O+6.2 × 10–16[18]
    (I37)C+ + O2 $ \Rightarrow$ CO+ + O3.8 × 10–16[18]
    (I38)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow$ 2CO + $ {\mathrm{O}}_{2}^{+} $5.0 × 10–18[18]
    (I39)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O3 $ \Rightarrow$ CO2 + $ {\mathrm{O}}_{3}^{-} $ + O21.3 × 10–16[18]
    (I40)$ {\mathrm{C}\mathrm{O}}_{4}^{+} $ + O3 $ \Rightarrow$ $ {\mathrm{O}}_{5}^{+} $ + CO21.0 × 10–16[52]
    (I41)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow$ O + CO21.0 × 10–13[62]
    (I42)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ CO + O2 + O6.0 × 10–13[44]
    (I43)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ $ \Rightarrow$ 2CO2 + O5.0 × 10–13[58]
    (I44)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ 2CO2 + O25.0 × 10–13[18]
    (I45)CO+ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ CO + O22.0 × 10–13[55]
    (I46)C+ + O $ \Rightarrow$ C + O5.0 × 10–14[55]
    (I47)C+ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ C + O25.0 × 10–14[55]
    (I48)O+ CO+ $ \Rightarrow$ CO + O1.0 × 10–13[62]
    (I49)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ CO2 + O2 + O3.0 × 10–13[18]
    (I50)$ {\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ CO2 + 2O23.0 × 10–13[18]
    (I51)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + M $ \Rightarrow$ CO+ + CO + M1.0 × 10–18[18]
    (I52)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $$ \Rightarrow$ CO2 + 2CO + O5.0 × 10–13[18]
    (I53)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ CO2 + 2CO + O25.0 × 10–13[18]
    (I54)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + $ {\mathrm{O}}_{2}^{-} $$ \Rightarrow$ 2CO + O26.0 × 10–13[18]
    (I55)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ $ \Rightarrow$ 2CO2 + CO + O5.0 × 10–13[18]
    (I56)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ 2CO2 + CO + O25.0 × 10–13[18]
    (I57)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ CO2 + CO + O26.0 × 10–13[18]
    (I58)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + M $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO2 + M1.0 × 10–20[18]
    (I59)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $$ \Rightarrow$ 3CO2 + O5.0 × 10–13[18]
    (I60)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ 3CO2 + O25.0 × 10–13[18]
    (I61)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ 2CO2 + O26.0 × 10–13[18]
    (I62)O+ O3 $ \Rightarrow$ 2O2 + e3.0 × 10–16[44]
    (I63)O+ O3 $ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O8.0 × 10–16[18]
    (I64)$ {\mathrm{O}}_{2}^{-} $ + O3 $ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O24.0 × 10–16[18]
    (I65)$ {\mathrm{O}}_{3}^{-} $ + O3 $ \Rightarrow$ 3O2 + e3.0 × 10–16[18]
    (I66)O+ + O3 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O21.0 × 10–16[18]
    (I67)O + O2 $ \Rightarrow$ O3 + e1.0 × 10–18[44]
    (I68)O + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{-} $ + O1.5 × 10–18[55]
    (I69)O + O2 $ \Rightarrow$ O + e + O26.9 × 10–16[52]
    (I70)O + O2 + O2 $ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O21.1 × 10–42(Tg/300)[52]
    (I71)$ {\mathrm{O}}_{2}^{-} $ + O2 $ \Rightarrow$ 2O2 + e2.7 × 10–16(Tg/300)0.5exp(–5590/Tg)[52]
    (I72)$ {\mathrm{O}}_{2}^{-} $ + O2 + M $ \Rightarrow$ $ {\mathrm{O}}_{4}^{-} $ + M3.5 × 10–43[18]
    (I73)$ {\mathrm{O}}_{3}^{-} $ + O2 $ \Rightarrow$ O2 + O3 + e2.3 × 10–17[18]
    (I74)O+ + O2 $ \Rightarrow$ O + $ {\mathrm{O}}_{2}^{+} $1.9 × 10–17(Tg/298)–0.5[18]
    (I75)$ {\mathrm{O}}_{2}^{+} $ + O2 + O2 $ \Rightarrow$ $ {\mathrm{O}}_{4}^{+} $ + O24.0 × 10–42(Tg/300)–2.93[52]
    (I76)$ {\mathrm{O}}_{4}^{+} $ + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O2 + O21.8 × 10–19[52]
    (I77)O+ + O + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O21.0 × 10–41[52]
    (I78)O + O $ \Rightarrow$ O2 + e2.3 × 10–16[21]
    (I79)$ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow$ O2 + O3.31 × 10–16[21]
    (I80)$ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow$ O3 + e3.3 × 10–16[18]
    (I81)$ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ O3 + O1.0 × 10–19[18]
    (I82)$ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ 2O2 + e1.0 × 10–19[18]
    (I83)$ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{2}^{-} $ + O22.5 × 10–16[18]
    (I84)$ {\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O24.0 × 10–16[18]
    (I85)$ {\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ O + 2O23.0 × 10–16[18]
    (I86)$ {\mathrm{O}}_{4}^{+} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O33.0 × 10–16[18]
    (I87)O + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ O2 + O2.6 × 10–14(300/Tg)0.44[21]
    (I88)O + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ 3O4.2 × 10–13(300/Tg)0.44[21]
    (I89)O + $ {\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow$ O3 + O22.0 × 10–37[57]
    (I90)O + O+ + O $ \Rightarrow$ O2 + O2.0 × 10–37[57]
    (I91)O + O+ + O2 $ \Rightarrow$ 2O22.0 × 10–37[57]
    (I92)O + O+ $ \Rightarrow$ 2O4.0 × 10–14[18]
    (I93)$ {\mathrm{O}}_{2}^{-} $ + O+ $ \Rightarrow$ O + O22.7 × 10–13[18]
    (I94)$ {\mathrm{O}}_{2}^{-} $ + O+ + O2 $ \Rightarrow$ O3 + O22.0 × 10–37[57]
    (I95)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ 2O22.01 × 10–13(300/Tg)0.5[21]
    (I96)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ O2 + 2O4.2 × 10–13[21]
    (I97)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow$ 3O22.0 × 10–37[57]
    (I98)$ {\mathrm{O}}_{3}^{-} $ + O + M $ \Rightarrow$ O3 + O + M2.0 × 10–37(Tg/300)–2.5[57]
    (I99)$ {\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ + M $ \Rightarrow$ O3 + O2 + M2.0 × 10–37(Tg/300)–2.5[57]
    (I100)$ {\mathrm{O}}_{3}^{-} $ + O+ $ \Rightarrow$ O3 + O1.0 × 10–13[18]
    (I101)$ {\mathrm{O}}_{3}^{-} $+ $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ O2 + O32.0 × 10–13[18]
    (I102)$ {\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ 2O + O31.0 × 10–13[18]
    (I103)$ {\mathrm{O}}_{4}^{-} $ + M $ \Rightarrow$ $ {\mathrm{O}}_{2}^{-} $ + O2 + M4.0 × 10–18[18]
    DownLoad: CSV

    表 B1  简化集合中的粒子构成

    Table B1.  Composition of particles in the simplified model.

    简化集合粒子构成
    中性粒子CO2, CO, C, O, O2, O3
    正离子$ {\mathrm{C}\mathrm{O}}_{2}^{+} $, CO+, C+, O+, $ {\mathrm{O}}_{2}^{+} $
    负离子$ {\mathrm{C}\mathrm{O}}_{4}^{-} $, $ {\mathrm{C}\mathrm{O}}_{3}^{-} $, O, $ {\mathrm{O}}_{2}^{-} $, $ {\mathrm{O}}_{3}^{-} $
    DownLoad: CSV

    表 A3  初始集合中由反应速率系数描述的电子碰撞反应, 其中Te为电子温度, 单位是eV; Tg为气体温度, 单位是K; 速率系数的单位在二体或三体反应中分别是m3/s或m6/s

    Table A3.  Electron impact reactions described by rate coefficients in the original model. Te is the electron temperature in eV and Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (E01)e + e + C+ $\Rightarrow $ C + e5.0 × 10–39[55]
    (E02)e + CO+ $\Rightarrow $ C + O3.46 × 10–14Te–0.48[56]
    (E03)e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ C + O23.94 × 10–13Te–0.4[21]
    (E04)e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ CO + O2.0 × 10–11Te–0.5Tg–1[18]
    (E05)e + $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ $\Rightarrow $ CO2 + O21.61 × 10–13Te–0.5[18]
    (E06)e + $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ $\Rightarrow $ 2CO4.0 × 10–13Te–0.34[18]
    (E07)e + $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ $\Rightarrow $ CO2 + CO5.4 × 10–14Te–0.7[18]
    (E08)e + $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ $\Rightarrow $ 2CO22.0 × 10–11Te–0.5Tg–1[18]
    (E09)e + O2 + O2 $\Rightarrow $ $ {\mathrm{O}}_{2}^{-} $ + O22.2 × 10–41(300/Tg)1.5exp(-600/Tg)[52]
    (E10)e + O + O2 $\Rightarrow $ O + O21.0 × 10–43exp(300/Tg)[52]
    (E11)e + O3 + O2 $\Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O24.6 × 10–40[52]
    (E12)e + O+ + M $\Rightarrow $ O + M6.0 × 10–39(Te × 38.67)–1.5[57]
    (E13)e + $ {\mathrm{O}}_{2}^{+} $ $\Rightarrow $ 2O6.0 × 10–13Te–0.5(1/Tg)0.5[21]
    (E14)e + $ {\mathrm{O}}_{2}^{+} $ + M $\Rightarrow $ O2 + M6.0 × 10–39(Te × 38.67)–1.5[57]
    (E15)e + $ {\mathrm{O}}_{2}^{+} $ + e $\Rightarrow $ O2 + e1.0 × 10–31(Te × 38.67)–4.5[57]
    (E16)e + O+ + e $\Rightarrow $ O + e7.2 × 10–32(Te × 38.67)–4.5[57]
    (E17)e + $ {\mathrm{O}}_{4}^{+} $ $\Rightarrow $ 2O22.25 × 10–13Te–0.5[18]
    (E18)e + $ {\mathrm{O}}_{5}^{+} $ $\Rightarrow $ O2 + O35.0 × 10–12(Te × 38.67)–0.6[52]
    DownLoad: CSV

    表 A4  初始集合中的中性粒子反应, 其中 Tg 为气体温度, 单位是 K; 速率系数的单位在二体或三体反应中分别是 m3/s 或 m6/s

    Table A4.  Reaction of neutrals in the original model. Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (N01)CO2 + O $ \Rightarrow$ CO + O22.8 × 10–17exp(–26500/Tg)[21]
    (N02)CO + O2 $ \Rightarrow$ CO2 + O4.2 × 10–18exp(–24000/Tg)[21]
    (N03)CO2 + C $ \Rightarrow$ 2CO1.0 × 10–21[21]
    (N04)C + O2 $ \Rightarrow$ O + CO3.0 × 10–17[21]
    (N05)C + O + M $ \Rightarrow$ M + CO2.14 × 10–41(Tg/300)–3.08exp(–2114/Tg)[21]
    (N06)CO + M $ \Rightarrow$ O + C + M1.52 × 10–10(Tg/298)–3.1exp(–129000/Tg)[58]
    (N07)CO + O3 $ \Rightarrow$ CO2 + O24.0 × 10–31[52]
    (N08)CO2 + CO2 $ \Rightarrow$ CO + O + CO23.91 × 10–16exp(–49430/Tg)[59]
    (N09)C + CO + CO2 $ \Rightarrow$ C2O + CO26.3 × 10–44[59]
    (N10)C2O + O $ \Rightarrow$ 2CO5.0 × 10–17[18]
    (N11)C2O + O2 $ \Rightarrow$ CO2 + CO3.3 × 10–19[18]
    (N12)O + O2 + CO2 $ \Rightarrow$ O3 + CO21.7 × 10–42Tg–1.2[48]
    (N13)O + O + CO2 $ \Rightarrow$ O2 + CO23.81 × 10–42Tg–1exp(–170/Tg)[48]
    (N14)O + CO + CO2 $ \Rightarrow$ 2CO21.6 × 10–45exp(–1510/Tg)[48]
    (N15)O + CO + CO $ \Rightarrow$ CO2 + CO6.54 × 10–45[60]
    (N16)O + O2 + CO $ \Rightarrow$ CO2 + O26.51 × 10–48[60]
    (N17)O + O + CO $ \Rightarrow$ O2 + CO2.76 × 10–46[60]
    (N18)O + O + O $ \Rightarrow$ O2 + O6.2 × 10–44exp(–750/Tg)[52]
    (N19)O + O + O2 $ \Rightarrow$ 2O21.3 × 10–44(Tg/300)–1exp(–170/Tg)[52]
    (N20)O + O3 $ \Rightarrow$ 2O23.1 × 10–20Tg0.75exp(–1575/Tg)[18]
    (N21)O2 + O3 $ \Rightarrow$ 2O2 + O7.26 × 10–16exp(–11400/Tg)[48]
    (N22)O2 + O + O2 $ \Rightarrow$ O3 + O28.61 × 10–43Tg–1.25[48]
    (N23)O2 + O2 $ \Rightarrow$ O + O32.1 × 10–17exp(–498000/Tg)[57]
    (N24)O2 + M $ \Rightarrow$ O + O + M3.0 × 10–12Tg–1exp(–59380/Tg)[57]
    DownLoad: CSV

    表 B2  简化集合中由碰撞截面描述的电子碰撞反应

    Table B2.  Electron impact reactions described by collision cross sections in the simplified model.

    序号反应文献 序号反应文献
    (Y01)e + CO2 $\Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + 2e[50] (Y11)e + O3 $\Rightarrow $ $ {\mathrm{O}}_{2}^{-} $ + O[50]
    (Y02)e + CO2 $\Rightarrow $ CO + O + e[50](Y12)e + O3 $\Rightarrow $ O2 + O[50]
    (Y03)e + CO2 $\Rightarrow $ CO + O[50](Y13)e + O3 $\Rightarrow $ O + O2 + e[53]
    (Y04)e + CO2 $\Rightarrow $ 2e + O + CO+[50](Y14)e + O3 $\Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + O + 2e[53]
    (Y05)e + CO2 $\Rightarrow $ 2e + CO + O+[50](Y15)e + O2 $\Rightarrow $ 2 O + e[50]
    (Y06)e + CO2 $\Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + C + 2e[51, 52](Y16)e + O2 $\Rightarrow $ O + O[50]
    (Y07)e + CO $\Rightarrow $ C + O[50](Y17)e + O2 $\Rightarrow $ 2e + $ {\mathrm{O}}_{2}^{+} $[50]
    (Y08)e + CO $\Rightarrow $ e + C + O[50](Y18)e + O $\Rightarrow $ 2e + O+[50]
    (Y09)e + CO $\Rightarrow $ 2e + CO+[50](Y19)e + C $\Rightarrow $ 2e + C+[50]
    (Y10)e + CO $\Rightarrow $ 2e + C+ + O[50]
    DownLoad: CSV

    表 B3  简化集合中由反应速率系数描述的电子碰撞反应, 其中Te为电子温度, 单位是eV; Tg为气体温度, 单位是K; 速率系数的单位在二体或三体反应中分别是m3/s或m6/s

    Table B3.  Electron impact reactions described by rate coefficients in the simplified model. Te is the electron temperature in eV and Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (F01)e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ C + O23.94 × 10–13Te–0.4[21]
    (F02)e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ CO + O2.0 × 10–11Te–0.5Tg–1[18]
    (F03)e + O3 + O2 $\Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O24.6 × 10–40[52]
    (F04)e + $ {\mathrm{O}}_{2}^{+} $ $\Rightarrow $ 2O6.0 × 10–13Te–0.5(1/Tg)0.5[21]
    DownLoad: CSV

    表 B4  简化集合中的中性粒子反应, 其中, Tg 为气体温度, 单位是 K; 速率系数的单位在二体或三体反应中分别是 m3/s 或 m6/s

    Table B4.  Reaction of neutrals in the simplified model. Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (M01)CO2 + C $ \Rightarrow$ 2 CO1.0 × 10–21[21]
    (M02)C + O2 $\Rightarrow $ O + CO3.0 × 10–17[21]
    (M03)O + O2 + CO2 $\Rightarrow $ O3 + CO21.7 × 10–42Tg–1.2[48]
    (M04)O + O + CO2 $\Rightarrow $ O2 + CO23.81 × 10–42Tg–1exp(–170/Tg)[48]
    DownLoad: CSV

    表 B5  简化集合中的离子-中性和离子-离子反应, 其中Tg为气体温度, 单位是K; 速率系数的单位在二体或三体反应中分别是m3/s或m6/s

    Table B5.  Ion-neutral and ion-ion reactions in the simplified model. Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (H01)O + CO2 $ \Rightarrow $ O + CO2 + e4.0 × 10–18[48]
    (H02)O + CO2 + CO $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO1.5 × 10–40[61]
    (H03)O + CO2 + O2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O23.1 × 10–40[61]
    (H04)O + CO2 + CO2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO29.0 × 10–41[52]
    (H05)$ {\mathrm{O}}_{2}^{-} $ + CO2 + O2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O24.7 × 10–41[52]
    (H06)$ {\mathrm{O}}_{3}^{-} $ + CO2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O25.5 × 10–16[18]
    (H07)O+ + CO2 $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + CO9.4 × 10–16[18]
    (H08)O+ + CO2 $ \Rightarrow $ O + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $4.5 × 10–16[18]
    (H09)C+ + CO2 $ \Rightarrow $ CO+ + CO1.1 × 10–15[18]
    (H10)CO+ + CO2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO1.0 × 10–15[56]
    (H11)O + CO $ \Rightarrow $ CO2 + e5.5 × 10–16[44]
    (H12)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO $ \Rightarrow $ 2CO2 + e5.0 × 10–19[58]
    (H13)$ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow $ CO+ + O5.2 × 10–17[18]
    (H14)$ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow $ C+ + O25.2 × 10–17[18]
    (H15)O + C $ \Rightarrow $ CO + e5.0 × 10–16[57]
    (H16)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + CO1.638 × 10–16[52]
    (H17)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow $ CO2 + O+9.62 × 10–17[18]
    (H18)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O21.1 × 10–16[18]
    (H19)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow $ CO2 + O2 + O1.4 × 10–17[18]
    (H20)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow $ CO2 + $ {\mathrm{O}}_{3}^{-} $1.4 × 10–16[18]
    (H21)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow $ CO2 + $ {\mathrm{O}}_{2}^{-} $8.0 × 10–17[58]
    (H22)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + CO26.4 × 10–17[52]
    (H23)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow $ O + CO21.0 × 10–13[62]
    (H24)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow $ CO + O2 + O6.0 × 10–13[44]
    (H25)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ $ \Rightarrow $ 2CO2 + O5.0 × 10–13[58]
    (H26)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow $ 2CO2 + O25.0 × 10–13[18]
    (H27)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ CO2 + O2 + O3.0 × 10–13[18]
    (H28)$ {\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow $ CO2 + 2O23.0 × 10–13[18]
    (H29)O + O3 $ \Rightarrow $ 2O2 + e3.0 × 10–16[44]
    (H30)O + O3 $ \Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O8.0 × 10–16[18]
    (H31)$ {\mathrm{O}}_{2}^{-} $ + O3 $ \Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O24.0 × 10–16[18]
    (H32)O + O2 $ \Rightarrow $ O + e + O26.9 × 10–16[52]
    (H33)O + O $ \Rightarrow $ O2 + e2.3 × 10–16[21]
    (H34)$ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow $ O2 + O3.31 × 10–16[21]
    (H35)$ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow $ O3 + e3.3 × 10–16[18]
    (H36)$ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow $ $ {\mathrm{O}}_{2}^{-} $ + O22.5 × 10–16[18]
    (H37)O+ $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ O2 + O2.6 × 10–14(300/Tg)0.44[21]
    (H38)O + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ 3O4.2 × 10–13(300/Tg)0.44[21]
    (H39)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ 2O22.01 × 10–13(300/Tg)0.5[21]
    (H40)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ O2 + 2O4.2 × 10–13[21]
    DownLoad: CSV
  • [1]

    史建魁, 张仲谋, 刘振兴 1997 地球物理学进展 04 98Google Scholar

    Shi J K, Zhang Z M, Liu Z X 1997 Prog. Geophys. 04 98Google Scholar

    [2]

    Thomas P, Gierasch P J 1985 Science 230 175Google Scholar

    [3]

    Sullivan R, Banfield D, Bell J F 2005 Nature 436 58Google Scholar

    [4]

    Bougher S W, Murphy J, Haberle R M 1997 Adv. Space Res. 19 1255Google Scholar

    [5]

    Lämmel M, Kroy K 2017 Phys. Rev. E 96 052906Google Scholar

    [6]

    Read P L, Lewis S R, Mulholland D P 2015 Rep. Prog. Phys. 78 125901Google Scholar

    [7]

    Barth E L, Farrell W M, Rafkin S C R 2016 Icarus 268 253Google Scholar

    [8]

    Esposito F, Molinaro R, Popa C I 2016 Geophys. Res. Lett. 43 5501Google Scholar

    [9]

    Schmidt D S, Schmidt R A, Dent J D 1998 J. Geophys. Res. 103 8997Google Scholar

    [10]

    Melnik O, Parrot M 1998 J. Geophys. Res. 103 29107Google Scholar

    [11]

    Eden H F, Vonnegut B 1973 Science 180 962Google Scholar

    [12]

    Farrell W M, McLain J L, Collier M R 2015 Icarus 254 333Google Scholar

    [13]

    Farrell W M, McLainb J L, Collier M R 2017 Icarus 297 90Google Scholar

    [14]

    Hecht M, Hoffman J, Rapp D 2021 Space Sci. Rev. 217 9Google Scholar

    [15]

    Keudell A V, Volker S 2017 Plasma Sources Sci. Technol. 26 113001Google Scholar

    [16]

    Guerra V, Silva T, Ogloblina P 2017 Plasma Sources Sci. Technol. 26 11LT01Google Scholar

    [17]

    Bogaerts A, Kozak T, Laer K V 2015 Faraday Discuss. 183 217Google Scholar

    [18]

    Kozák T, Bogaerts A 2014 Plasma Sources Sci. Technol. 23 045004Google Scholar

    [19]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C 116 23257Google Scholar

    [20]

    Berthelot A, Bogaerts A 2017 J. Phys. Chem. C 121 8236Google Scholar

    [21]

    Sun R, Wang H X, Bogaerts A 2020 Plasma Sources Sci. Technol. 29 025012Google Scholar

    [22]

    Hurlbatt A, Gibson A, Schröter S 2017 Plasma Processes Polym. 14 1600138Google Scholar

    [23]

    Lazarou C, Belmonte T, Chiper A 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [24]

    Wang W, Berthelot A, Kolev S 2016 Plasma Sources Sci. Technol. 25 065012Google Scholar

    [25]

    Takana H, Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001Google Scholar

    [26]

    Dubin D H E, Jin D Z 2003 Phys. Plasmas 10 1338Google Scholar

    [27]

    Kelly S, Golda J, Turner M 2015 J. Phys. D:Appl. Phys. 48 444002Google Scholar

    [28]

    Iqbal M M, Stallard C P, Dowling D P, Turner M M 2014 Plasma Processes Polym. 12 201Google Scholar

    [29]

    Stagni A, Frassoldati A, Cuoci A 2015 Combust. Flame 163 382Google Scholar

    [30]

    Rabitz H, Kramer M, Dacol D 2003 Annu. Rev. Phys. Chem. 34 419Google Scholar

    [31]

    Tomlin A S, Pilling M J, Meriting J H 1995 Ind. Eng. Chem. Res. 34 3749Google Scholar

    [32]

    Brown N J, And G L, Koszykowski M L 2015 Int. J. Chem. Kinet. 29 393Google Scholar

    [33]

    Lehmann R 2004 J. Atmos. Chem. 47 45Google Scholar

    [34]

    Strogatz S, Steven H 2003 SIAM Rev. 45 167Google Scholar

    [35]

    Kolaczyk E D 2009 Statistical Analysis of Network Data: Methods and Models (New York: Springer) pp79−120

    [36]

    Boccaletti S, Bianconi G, Criado R 2014 Phys. Rep. 544 1Google Scholar

    [37]

    Estrada E, Hatano N, Benzi M 2012 Phys. Rep. 514 89Google Scholar

    [38]

    Klamt S, Hädicke O, Kamp A V 2014 Large-Scale Networks in Engineering and Life Sciences (Cham: Birkhäuser Basel) pp263−316

    [39]

    Sakai O, Nobuto K, Miyagi S 2015 AIP Adv. 5 107140Google Scholar

    [40]

    Mizui Y, Kojima T, Miyagi S 2017 Symmetry 9 309Google Scholar

    [41]

    Lu T F, Law C K 2005 Proc. Combust. Inst. 30 1333Google Scholar

    [42]

    Lu T F, Law C K 2006 Combust. Flame 146 472Google Scholar

    [43]

    Snoeckx R, Bogaerts A 2017 Chem. Soc. Rev. 46 5805Google Scholar

    [44]

    Aerts R, Somers W, Bogaerts A 2015 ChemSusChem 8 702Google Scholar

    [45]

    Zhang Y T, Wang Y H 2018 Phys. Plasmas 25 023509Google Scholar

    [46]

    高书涵, 王绪成, 张远涛 2020 物理学报 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [47]

    Bogaerts A, Wang W Z 2016 Plasma Sources Sci. Technol. 25 055016Google Scholar

    [48]

    Ponduri S, Becker M M, Welzel S 2016 J. Appl. Phys. 119 093301Google Scholar

    [49]

    Stijn H, Luca M M, Giorgio D 2019 J. Phys. Chem. C 123 12104Google Scholar

    [50]

    Phelps A V www.lxcat.net [2020-3-21]

    [51]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [52]

    Beuthe T G, Chang J S 1997 Jpn. J. Appl. Phys. 36 4997Google Scholar

    [53]

    Eliasson B, Kogelschatz U 1986 Brown Boveri Research Report KLR 86-11C

    [54]

    Roberson G, Roberto M, Verboncoeur J 2015 Braz. J. Phys. 37 457Google Scholar

    [55]

    Spencer L F 2012 Ph. D. Dissertation (Ann Arbor: University of Michigan)

    [56]

    Berthelot A, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 115002Google Scholar

    [57]

    Wang W, Snoeckx R, Zhang X 2018 J. Phys. Chem. C 122 8704Google Scholar

    [58]

    Berthelot A, Bogaerts A 2016 Plasma Sources Sci. Technol. 25 045022Google Scholar

    [59]

    Moss M S 2017 Plasma Sources Sci. Technol. 26 035009Google Scholar

    [60]

    Harder N D, Bekerom D C M V D, Al R S 2017 Plasma Processes Polym. 14 1600120Google Scholar

    [61]

    Vermeiren V, Bogaerts A 2018 J. Phys. Chem. C 122 25869Google Scholar

    [62]

    Cheng C, Ma M, Zhang Y, Liu D 2020 J. Phys. D: Appl. Phys. 53 144001Google Scholar

    [63]

    Li J, Fang C, Chen J, Li H P 2021 J. Appl. Phys. 129 133302Google Scholar

  • [1] Wang Song, Zhou Chuang, Li Su-Wen, Mou Fu-Sheng. Method of measuring atmospheric CO2 based on Fabry-Perot interferometer. Acta Physica Sinica, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] Fu Qiang, Wang Cong, Wang Yu-Fei, Chang Zheng-Shi. Comparative study on discharge characteristics of low pressure CO2 driven by sinusoidal AC voltage: DBD and bare electrode structure. Acta Physica Sinica, 2022, 71(11): 115204. doi: 10.7498/aps.71.20220086
    [3] Sun Guan-Wen, Cui Han-Yin, Li Chao, Lin Wei-Jun. Methods of modelling dispersive sound speed profiles of Martian atmosphere and their effects on sound propagation paths. Acta Physica Sinica, 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [4] Sun Chun-Yan, Wang Gui-Shi, Zhu Gong-Dong, Tan Tu, Liu Kun, Gao Xiao-Ming. Atmospheric CO2 column concentration retrieval based on high resolution laser heterodyne spectra and evaluation method of system measuring error. Acta Physica Sinica, 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [5] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Peng Zhi-Min. Monitoring of ambient methane and carbon dioxide concentrations based on wavelength modulation-direct absorption spectroscopy. Acta Physica Sinica, 2020, 69(6): 064205. doi: 10.7498/aps.69.20191569
    [6] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [7] Wang Qian, Bi Yan-Meng, Yang Zhong-Dong. Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2. Acta Physica Sinica, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [8] Shan Chang-Gong, Wang Wei, Liu Cheng, Xu Xing-Wei, Sun You-Wen, Tian Yuan, Liu Wen-Qing. Detection of stable isotopic ratio of atmospheric CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [9] Wang Kai, Zhang Wen-Hua, Liu Ling-Yun, Xu Fa-Qiang. Healing of oxygen defects on VO2 surface: F4TCNQ adsorption. Acta Physica Sinica, 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [10] Li Zhi-Bin, Ma Hong-Liang, Cao Zhen-Song, Sun Ming-Guo, Huang Yin-Bo, Zhu Wen-Yue, Liu Qiang. High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient CO2 at 2 μm. Acta Physica Sinica, 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [11] Chen Jie, Zhang Chun-Min, Wang Ding-Yi, Zhang Xing-Ying, Wang Shu-Peng, Li Yan-Fen, Liu Dong-Dong, Rong Piao. Effects of the surface albedo on short-wave infrared detection of atmospheric CO2. Acta Physica Sinica, 2015, 64(23): 239201. doi: 10.7498/aps.64.239201
    [12] Liu Hao, Shu Rong, Hong Guang-Lie, Zheng Long, Ge Ye, Hu Yi-Hua. Continuous-wave modulation differential absorption lidar system for CO2 measurement. Acta Physica Sinica, 2014, 63(10): 104214. doi: 10.7498/aps.63.104214
    [13] Han Yue-Qi, Zhong Zhong, Wang Yun-Feng, Du Hua-Dong. Gradient calculation based ensemble variational method and its application to the inversion of the turbulent coefficient in atmospheric Ekman layer. Acta Physica Sinica, 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [14] Sun You-Wen, Xie Pin-Hua, Xu Jin, Zhou Hai-Jin, Liu Cheng, Wang Yang, Liu Wen-Qing, Si Fu-Qi, Zeng Yi. Measurement of atmospheric CO2 vertical column density using weighting function modified differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [15] Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells. Acta Physica Sinica, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [16] Hong Guang-Lie, Zhang Yin-Chao, Zhao Yue-Feng, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [17] XU ZHEN-JIA, CHEN WEI-DE. IN-DEPTH OXYGEN CONTAMINATION PRODUCED IN CW CO2 LASER ANNEALED Si. Acta Physica Sinica, 1984, 33(1): 9-15. doi: 10.7498/aps.33.9
    [18] FU EN-SHENG, WANG YU-MIN, CHENG ZHAO-GU, DOU AI-RONG. ELECTRO-OPTIC FREQUENCY SHIFT OF 10.6μm CO2 LASER LINE. Acta Physica Sinica, 1979, 28(5): 24-31. doi: 10.7498/aps.28.24
    [19] GAO ZHI, LIN LIE, SUN WEN-CHAO. A THEORETICAL MODEL FOR TRANSVERSE-DISCHARGE FLOW TYPE CO2 LASERS. Acta Physica Sinica, 1979, 28(6): 807-823. doi: 10.7498/aps.28.807
    [20] LIN GUANG-HAI. THE SATURATION CHARACTERISTICS OF ELECTRIC DISCHARGE CONVECTION CO2 LASER. Acta Physica Sinica, 1978, 27(4): 396-412. doi: 10.7498/aps.27.396
Metrics
  • Abstract views:  4847
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2021
  • Accepted Date:  04 June 2021
  • Available Online:  15 August 2021
  • Published Online:  05 November 2021

/

返回文章
返回