Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative study on discharge characteristics of low pressure CO2 driven by sinusoidal AC voltage: DBD and bare electrode structure

Fu Qiang Wang Cong Wang Yu-Fei Chang Zheng-Shi

Citation:

Comparative study on discharge characteristics of low pressure CO2 driven by sinusoidal AC voltage: DBD and bare electrode structure

Fu Qiang, Wang Cong, Wang Yu-Fei, Chang Zheng-Shi
PDF
HTML
Get Citation
  • The low-pressure atmosphere rich in CO2 (~95%) on Mars makes the in-situ resource utilization of Martian CO2 and the improvement of oxidation attract widespread attention. It contributes to constructing the Mars base which will support the deep space exploration. Conversion of CO2 based on high voltage discharge has the advantages of environmental friendliness, high efficiency and long service life. It has application potential in the in-situ conversion and utilization of Martian CO2 resources. We simulate the CO2 atmosphere of Mars where the pressure is fixed at 1 kPa and the temperature is maintained at room temperature. A comparative study is carried out on the discharge characteristics of two typical electrode structures (with/without barrier dielectric) driven by 20 kHz AC voltage. Combined with numerical simulations, the CO2 discharge characteristics, products and their conversion pathways are analyzed. The results show that the discharge mode changes from single discharge during each half cycle into multi discharge pulses after adding the barrier dielectric. Each discharge pulse of the multi pulses corresponds to a random discharge channel, which is induced by the distorted electric field of accumulated charge on the dielectric surface and the space charge. The accumulated charge on the dielectric surface promotes the primary discharge and inhibits the secondary discharge. Space charge will be conducive to the occurrence of secondary discharge. The main products in discharge process include ${\rm{CO}}^+_2 $, CO, O2, C, and O. Among the products, CO is produced mainly by the attachment decomposition reaction between energetic electrons and CO2 at the boundary of cathode falling zone, and the contribution rate of the reaction can reach about 95%. The O2 is generated mainly by the compound decomposition reaction between electrons and ${\rm{CO}}^+_2 $ near the instantaneous anode surface or instantaneous anode side dielectric surface, and the contribution rate of the reaction can reach about 98%. It is further found that the dielectric does not change the generation position nor dominant reaction pathway of the two main products, but will reduce the electron density from 5.6×1016 m−3 to 0.9×1016 m−3 and electron temperature from 17.2 eV to 11.7 eV at the boundary of the cathode falling region, resulting in the reduction of CO production. At the same time, the deposited power is reduced, resulting in insufficient $ {\rm{CO}}^+_2 $ yield near the instantaneous anode surface and instantaneous anode side dielectric surface and further the decrease of O2 generation.
      Corresponding author: Chang Zheng-Shi, changzhsh1984@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. xzy012021014), the Beijing Institute of Spacecraft Environment Engineering Innovation Fund, China (Grant No. CAST-BISEE2019-021), and the Beijing Institute of Aerospace Systems Engineering Innovation Fund, China (Grant No. CALTJS2017-0031).
    [1]

    Mahaffy P R, Webster C R, Atreya S K, et al. 2013 Science 341 263Google Scholar

    [2]

    Starr S O, Muscatello A C 2020 Planet. Space Sci. 182 104824Google Scholar

    [3]

    欧阳自远, 肖福根 2012 航天器环境工程 29 591Google Scholar

    Ouyang Z Y, Xiao F G 2012 Spacecraft Environment Engineering 29 591Google Scholar

    [4]

    Ashford B, Tu X 2017 Curr. Opin. Green Sustain. Chem. 3 45Google Scholar

    [5]

    Wang W, Wang S, Ma X, Gong J 2011 Chem. Soc. Rev. 40 3703Google Scholar

    [6]

    Ganesh I 2014 Renew. Sust. Energ. Rev. 31 221Google Scholar

    [7]

    Ganesh I 2016 Renew. Sust. Energ. Rev. 59 1269Google Scholar

    [8]

    Wendt G L, Farnsworth M 1925 J. Am. Chem. Soc. 47 2494Google Scholar

    [9]

    Mei D, He Y, Liu S, Yan J, Tu X 2016 Plasma Process. Polym. 13 544Google Scholar

    [10]

    Snoeckx R, Heijkers S, Van Wesenbeeck K, Lenaerts S, Bogaerts A 2016 Energ. Environ. Sci. 9 999Google Scholar

    [11]

    Lu N, Zhang C, Shang K, Jiang N, Li J, Wu Y 2019 J. Phys. D Appl. Phys. 52 224003Google Scholar

    [12]

    Kozak T, Bogaerts A 2015 Plasma Sources Sci. T. 24 015024Google Scholar

    [13]

    Silva T, Britun N, Godfroid T, Snyders R 2014 Plasma Sources Sci. T. 23 025009Google Scholar

    [14]

    Spencer L F, Gallimore A D 2013 Plasma Sources Sci. T. 22 015019Google Scholar

    [15]

    Wang W, Berthelot A, Kolev S, Tu X, Bogaerts A 2016 Plasma Sources Sci. T. 25 065012Google Scholar

    [16]

    张凯, 张帅, 高远, 孙昊, 严萍, 邵涛 2019 高电压技术 45 1396

    Zhang K, Zhang S, Gao Y, Sun H, Yan P, Shao T 2019 High Voltage Engineering 45 1396

    [17]

    Chen Q, Sun J, Zhang X 2018 Chinese J. Chem. Eng. 26 1041Google Scholar

    [18]

    Ponduri S, Becker M M, Welzel S, van de Sanden M C M, Loffhagen D, Engeln R 2016 J. Appl. Phys. 119 093301Google Scholar

    [19]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C. 116 23257Google Scholar

    [20]

    Capitelli M, Celiberto R, Colonna G, et al. 2011 Plasma Phys. Contr. F. 53 124007Google Scholar

    [21]

    Pietanza L D, Colonna G, D'Ammando G, Capitelli M 2017 Plasma Phys. Contr. F. 59 014035Google Scholar

    [22]

    Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F 2016 Plasma Sources Sci. T. 25 025013Google Scholar

    [23]

    Brehmer F, Welzel S, van de Sanden M C M, Engeln R 2014 J. Appl. Phys. 116 123303Google Scholar

    [24]

    Ozkan A, Dufour T, Bogaerts A, Reniers F 2016 Plasma Sources Sci. T. 25 045016Google Scholar

    [25]

    Gruenwald J 2016 Acta Astronaut. 123 188Google Scholar

    [26]

    Guerra V, Silva T, Ogloblina P, et al. 2017 Plasma Sources Sci. T. 26 11LT01Google Scholar

    [27]

    Ogloblina P, Morillo-Candas A S, Silva A F, et al. 2021 Plasma Sources Sci. T. 30 065005Google Scholar

    [28]

    Zhang B, Zhang X 2020 J. Appl. Phys. 128 083302Google Scholar

    [29]

    Wang C, Fu Q, Chang Z, Zhang G 2021 Plasma Process. Polym. 18 e2000228Google Scholar

    [30]

    Wang C, Yao C, Chang Z, Zhang G 2019 Phys. Plasmas 26 123506Google Scholar

    [31]

    Kozak T, Bogaerts A 2014 Plasma Sources Sci. T. 23 045004Google Scholar

    [32]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [33]

    Land J E 1978 J. Appl. Phys. 49 5716Google Scholar

    [34]

    Lawton S A, Phelps A V 1978 J. Chem. Phys. 69 1055Google Scholar

    [35]

    Hokazono H, Fujimoto H 1987 J. Appl. Phys. 62 1585Google Scholar

    [36]

    Beuthe T G, Chang J S 1997 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 36 4997Google Scholar

    [37]

    Cenian A, Chernukho A, Borodin V, Sliwinski G 1994 Contrib. Plasm. Phys. 34 25Google Scholar

    [38]

    Eliasson B, Hirth M, Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421Google Scholar

    [39]

    Cenian A, Chernukho A, Borodin V 1995 Contrib. Plasm. Phys. 35 273Google Scholar

    [40]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. T. 16 399Google Scholar

    [41]

    Woodall J, Agundez M, Markwick-Kemper A J, Millar T J 2007 Astron. Astrophys. 466 1197Google Scholar

    [42]

    Hadjziane S, Held B, Pignolet P, Peyrous R, Coste C 1992 J. Phys. D Appl. Phys. 25 677Google Scholar

    [43]

    Blauer J A, Nickerson G R 1974 AIAA 7th Fluid and Plasma Dynamics Conference Pal0 Alto, California, June 17–19, 1974 p536

    [44]

    Poncin-Epaillard F, Aouinti M 2002 Plasmas Polym. 7 1Google Scholar

    [45]

    Khan M I, Rehman N U, Khan S, Ullah N, Masood A, Ullah A 2019 AIP Adv. 9 085015Google Scholar

    [46]

    谢维杰 2008 博士学位论文 (上海: 上海交通大学)

    Xie W J 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong Universitty) (in Chinese)

    [47]

    Wang X, Gao Y, Zhang S, Sun H, Li J, Shao T 2019 Appl. Energ. 243 132Google Scholar

    [48]

    Liu Z, Huang B, Zhu W, Zhang C, Tu X, Shao T 2020 Plasma Chem. Plasma P. 40 937Google Scholar

  • 图 1  平行板电极实验装置图 (a) 裸电极型; (b) DBD型

    Figure 1.  Diagram of parallel plate electrode: (a) Bare copper electrode; (b) copper electrode with dielectric barrier.

    图 2  CO2放电转化特性检测平台

    Figure 2.  Platform of CO2 discharge characteristic detection.

    图 3  4 mm间隙不同电极结构CO2放电电流波形 (a) 裸电极结构; (b) DBD结构

    Figure 3.  CO2 discharge current waveforms with different electrode structures when d = 4 mm: (a) Bare copper electrode; (b) copper electrode with dielectric barrier.

    图 4  DBD不同放电电流脉冲的放电图像

    Figure 4.  Discharge images of different current pulses in DBD.

    图 5  DBD放电参数分布

    Figure 5.  Distribution of discharge parameters in DBD.

    图 6  270—620 nm发射光谱

    Figure 6.  Optical emission spectra ranging from 270 to 620 nm

    图 7  270—570 nm裸电极与DBD发射光谱对比

    Figure 7.  Comparison of discharge optical spectra between copper electrode and DBD structure: 270–570 nm.

    图 8  750—900 nm裸电极与DBD发射光谱对比:

    Figure 8.  Comparison of discharge optical spectra between copper electrode and DBD structure: 750–900 nm.

    图 9  模型中CO和O2不同产生路径的贡献 (a) CO; (b) O2

    Figure 9.  Contribution of different production paths of CO and O2 in model: (a) CO; (b) O2.

    图 10  反应路径E9和E23在稳定周期下的反应速率

    Figure 10.  Reaction rate of path E9 and E23 at stable period.

    图 C1  270—620 nm发射光谱

    Figure C1.  Optical spectra ranging from 270 to 620 nm.

    图 C2  750—900 nm发射光谱

    Figure C2.  Optical spectra ranging from 750 to 900 nm.

    图 C3  200—280 nm裸电极发射光谱

    Figure C3.  Emission spectrum of bare copper electrode: 200–280 nm.

    图 D1  4 mm间隙裸电极放电峰值时刻ne, ni, ETe分布 (a) 正放电; (b)负放电

    Figure D1.  Distribution of ne, ni, E and Te at the peak time of discharge current of bare electrode when d = 4 mm: (a) Positive discharge; (b) negative discharge.

    图 D2  4 mm间隙DBD正放电放电峰值时刻ne, ni, ETe分布 (a)第1个脉冲; (b)第2个脉冲

    Figure D2.  Distribution of ne, ni, E and Te at the peak time of positive discharge current of DBD when d = 4 mm: (a) First pulse; (b) second pulse.

    表 1  模型中包括的粒子

    Table 1.  Types of particles included in the model.

    中性粒子CO2, CO, O, C, O2
    离子CO${}^+_2 $, O, O${}^+_2 $, O${}^-_2 $, CO${}^-_3 $
    激发态粒子CO2e, CO2v1, CO2v2, CO2v3, CO2v4
    DownLoad: CSV

    表 2  模型中考虑的振动态

    Table 2.  Vibrational particles considered in the model.

    基态模型中的符号对应振动态
    CO2CO2v1(010)
    CO2v2(100), (020)
    CO2v3(001)
    CO2v4(n00), (0n0)
    DownLoad: CSV

    表 3  模型中裸电极与DBD放电参数和产物对比

    Table 3.  Comparison of discharge parameters and products in model: bare copper electrode & DBD.

    放电参数和产物裸电极DBD
    功率/W1.00.06
    电子密度/m–31.1 × 10163.6 × 1015
    振动态密度和/m–31.0 × 10213.1 × 1019
    CO密度/m–32.2 × 10177.0 × 1015
    O2密度/m–38.8 × 10162.7 × 1015
    O密度/m–34.2 × 10161.5 × 1015
    C密度/m–33.5 × 10156.3 × 1014
    DownLoad: CSV

    表 B2  模型中的电子附着反应和电子-离子复合反应

    Table B2.  Electron attachment reactions and electron-ion recombination reactions in the model.

    序号反应速率系数参考文献
    E22e + CO${}_2^+ $ → CO + O2.0 × 10–11Te–0.5/Tg[35]
    E23e + CO${}_2^+ $ → C + O23.94 × 10–13Te–0.4[36]
    E24e + O${}_2^+ $ → O + O6.0 × 10–13Te–0.5Tg–0.5[35]
    E25e + O2 + M → M + O${}_2^- $3.0 × 10–42 (M = CO2)[37]
    2.0 × 10–42 (M = CO, O2)
    E26e + O + M → M + O1.0 × 10–43[37]
    E27e + O${}_2^+ $ + M → M + O21.0 × 10–38[31, 38]
    DownLoad: CSV

    表 B3  模型中的离子-中性粒子反应和离子-离子反应

    Table B3.  Ion-neutral particle reactions and ion-ion reactions in the model.

    序号反应速率系数参考文献
    I1O + CO2 +M→ CO${}_3^- $ + M9.0 × 10–41 (M = CO2)[35, 39]
    3.0 × 10–40 (M = CO, O2)
    I2O + CO → CO2 + e5.5 × 10–16[36]
    I3CO${}_3^- $ + CO → CO2 + CO2 + e5.0 × 10–19[35]
    I4O + M → O + M + e4.0 × 10–18[39]
    I5O + O → O2 + e2.3 × 10–16[40]
    I6O${}_2^- $ + CO${}_2^+ $ → CO + O2 + O6.0 × 10–13[35]
    I7O + CO${}_2^+ $ → CO + O${}_2^+ $1.64 × 10–16[31, 41]
    I8O2 + CO${}_2^+ $ → CO2 + O${}_2^+ $5.3 × 10–17[31, 41]
    I9CO${}_3^- $ + CO${}_2^+ $ → CO2 + CO2 + O5.0 × 10–13[35]
    I10CO${}_3^- $ + O${}_2^+ $ → CO2 + O2 + O3.0 × 10–13[35]
    I11CO${}_3^- $ + O → CO2 + O${}_2^- $8.0 × 10–17[35]
    I12O${}_2^- $ + O${}_2^+ $ → O2 + O22.0 × 10–13[40]
    I13O${}_2^- $ + O${}_2^+ $ → O + O + O24.2 × 10–13[35]
    I14O${}_2^- $ + O${}_2^+ $ + M → O2 + O2 + M2.0 × 10–37[38]
    I15O + O${}_2^+ $ → O + O21.0 × 10–13[35]
    I16O + O${}_2^+ $ → O + O + O2.6 × 10–14[40]
    I17O${}_2^- $ + O → O + O23.3 × 10–16[38]
    I18O${}_2^- $ + O2 → O2 + O2 +e2.18 × 10–24[38]
    I19O${}_2^- $ +M → O2 + M +e2.7 × 10–16(Tg/300)0.5exp(–5590/Tg)[36]
    DownLoad: CSV

    表 B4  模型中中性粒子之间的反应

    Table B4.  Reactions between neutral particles in the model.

    序号反应速率系数α参考文献
    N1CO2 +M → CO + O + M3.91 × 10–16exp(–49430/Tg)0.8[31]
    N2CO2 + O → CO + O22.8 × 10–17exp(–26500/Tg)0.5[31, 36]
    N3CO2 + C→ CO + CO1.0 × 10–21[39]
    N4O + CO +M → CO2 + M1.6 × 10–45exp(–1510/Tg) (M=CO2)[37]
    8.2 × 10–46exp(–1510/Tg) (M=CO, O2)
    N5O + C +M → CO + M2.14 × 10–41(Tg/300)–3.08exp(–2114/Tg)[36]
    N6O + O +M → O2 + M1.27 × 10–44(Tg/300)–1exp(–170/Tg)[42]
    N7O2 + CO → CO2 + O4.2 × 10–18exp(–24000/Tg)[36]
    N8O2 + C → CO + O3.0 × 10–17[37]
    DownLoad: CSV

    表 B5  模型中的振动能量传递反应

    Table B5.  Vibration energy transfer reactions in the model.

    序号反应速率系数参考文献
    V1CO2v1 + CO2 → CO2 + CO27.14 × 10–14exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V2CO2v1 + CO → CO + CO20.7 × 7.14 × 10–14exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V3CO2v1 + O2 → O2 + CO20.7 × 7.14 × 10–14exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V4CO2v2 + CO2 → CO2 + CO21.071 × 10–15exp(–137 Tg–1/3)[43]
    V5CO2v2 + CO → CO + CO23.1 × 1.071 × 10–15exp(–137 Tg–1/3)[43]
    V6CO2v2 + O2 → O2 + CO23.1 × 1.071 × 10–15exp(–137 Tg–1/3)[43]
    V7CO2v2 + CO2 → CO2 + CO2v11.942 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V8CO2v2 + CO → CO + CO2v10.7 × 1.942 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V9CO2v2 + O2 → O2 + CO2v10.7 × 1.942 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V10CO2v3 + CO2 → CO2 + CO2v28.57 × 10–7exp(–404 Tg–1/3+1096 Tg–2/3)[43]
    V11CO2v3 + CO → CO + CO2v20.3 × 8.57 × 10–7exp(–404 Tg–1/3+1096 Tg–2/3)[43]
    V12CO2v3 + O2 → O2 + CO2v20.4 × 8.57 × 10–7exp(–404 Tg–1/3+1096 Tg–2/3)[43]
    V13CO2v3 + CO2 → CO2 + CO2v41.431 × 10–11exp(–252 Tg–1/3+685 Tg–2/3)[43]
    V14CO2v3 + CO → CO + CO2v40.3 × 1.431 × 10–11exp(–252 Tg–1/3+685 Tg–2/3)[43]
    V15CO2v3 + O2 → O2 + CO2v40.4 × 1.431 × 10–11exp(–252 Tg–1/3+685 Tg–2/3)[43]
    V16CO2v3 + CO2 → CO2v1 + CO2v21.06 × 10–11exp(–242 Tg–1/3+633 Tg–2/3)[43]
    V17CO2v3 + CO2 → CO2 + CO2v14.25 × 10–7exp(–407 Tg–1/3+824 Tg–2/3)[43]
    V18CO2v3 + CO → CO + CO2v10.3 × 4.25 × 10–7exp(–407 Tg–1/3+824 Tg–2/3)[43]
    V19CO2v3 + O2 → O2 + CO2v10.4 × 4.25 × 10–7exp(–407 Tg–1/3+824 Tg–2/3)[43]
    V20CO2v4 + CO2 → CO2 + CO2v22.897 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V21CO2v4 + CO → CO + CO2v20.7 × 2.897 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V22CO2v4 + O2 → O2 + CO2v20.7 × 2.897 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V23CO2v4 + CO2 → CO2 + CO2v11.071 × 10–15exp(–137 Tg–1/3)[43]
    V24CO2v4 + CO → CO + CO2v13.1 × 1.071 × 10–15exp(–137 Tg–1/3)[43]
    V25CO2v4 + O2 → O2 + CO2v13.1 × 1.071 × 10–15exp(–137 Tg–1/3)[43]
    DownLoad: CSV

    表 B1  模型中的电子碰撞反应

    Table B1.  Electron impact reactions in the model.

    序号反应速率系数参考文献
    E1e + CO2 → e + CO2f (σ)[32]
    E2e + CO2vi → e + CO2vif (σ)[32]
    E3e + CO2 → 2e + CO${}_2^+ $f (σ)[32]
    E4e + CO2vi → 2e + CO${}_2^+ $f (σ)[32]
    E5e + CO2 → e + CO2ef (σ)[32]
    E6e + CO2vi → e + CO2ef (σ)[32]
    E7e + CO2 → e + O + COf (σ)[32]
    E8e + CO2vi → e + O + COf (σ)[32]
    E9e + CO2 → O + COf (σ)[32]
    E10e + CO2vi → O + COf (σ)[32]
    E11e + CO2 → e + CO2v1f (σ)[32]
    E12e + CO2 → e + CO2v2f (σ)[32]
    E13e + CO2 → e + CO2v3f (σ)[32]
    E14e + CO2 → e + CO2v4f (σ)[32]
    E15e + CO → e + COf (σ)[33]
    E16e + CO → e + C + Of (σ)[33]
    E17e + CO → C + Of (σ)[33]
    E18e + O2 → e + O2f (σ)[34]
    E19e + O2 → e + O + Of (σ)[34]
    E20e + O2 → O + Of (σ)[34]
    E21e + O2 → 2e + O${}_2^+ $f (σ)[34]
    DownLoad: CSV

    表 C3  CO(A1Π→X1Σ)第四正带系的光谱参数

    Table C3.  Spectral parameters of the fourth positive band system of CO(A1Π→X1Σ).

    波长/nm振动能级(ν'→ν'')Δν
    200.51→87
    208.95→127
    221.63→129
    224.78→168
    228.66→159
    235.65→1510
    DownLoad: CSV

    表 C4  CO+(B2Σ+→X2Σ+)第一负带系的光谱参数

    Table C4.  Spectral parameters of the first negative band system of CO+(B2Σ+→X2Σ+).

    波长/nm振动能级(ν'→ν'')Δν
    244.51→32
    247.42→42
    253.04→62
    257.71→43
    DownLoad: CSV

    表 C1  CO(b3Σ→a3Π)第三正带系的光谱参数

    Table C1.  Spectral parameters of the third positive band system of CO(b3Σ→a3Π).

    波长/nm振动能级(ν'→ν'')Δν
    2830→00
    2970→11
    3130→22
    DownLoad: CSV

    表 C2  CO(B1Σ→A1Π)Angstrom系的光谱参数

    Table C2.  Spectral parameters of the Angstrom system of CO(B1Σ→A1Π).

    波长/nm振动能级(ν'→ν'')Δν
    4510→00
    4830→11
    5200→22
    5610→33
    6080→44
    DownLoad: CSV
  • [1]

    Mahaffy P R, Webster C R, Atreya S K, et al. 2013 Science 341 263Google Scholar

    [2]

    Starr S O, Muscatello A C 2020 Planet. Space Sci. 182 104824Google Scholar

    [3]

    欧阳自远, 肖福根 2012 航天器环境工程 29 591Google Scholar

    Ouyang Z Y, Xiao F G 2012 Spacecraft Environment Engineering 29 591Google Scholar

    [4]

    Ashford B, Tu X 2017 Curr. Opin. Green Sustain. Chem. 3 45Google Scholar

    [5]

    Wang W, Wang S, Ma X, Gong J 2011 Chem. Soc. Rev. 40 3703Google Scholar

    [6]

    Ganesh I 2014 Renew. Sust. Energ. Rev. 31 221Google Scholar

    [7]

    Ganesh I 2016 Renew. Sust. Energ. Rev. 59 1269Google Scholar

    [8]

    Wendt G L, Farnsworth M 1925 J. Am. Chem. Soc. 47 2494Google Scholar

    [9]

    Mei D, He Y, Liu S, Yan J, Tu X 2016 Plasma Process. Polym. 13 544Google Scholar

    [10]

    Snoeckx R, Heijkers S, Van Wesenbeeck K, Lenaerts S, Bogaerts A 2016 Energ. Environ. Sci. 9 999Google Scholar

    [11]

    Lu N, Zhang C, Shang K, Jiang N, Li J, Wu Y 2019 J. Phys. D Appl. Phys. 52 224003Google Scholar

    [12]

    Kozak T, Bogaerts A 2015 Plasma Sources Sci. T. 24 015024Google Scholar

    [13]

    Silva T, Britun N, Godfroid T, Snyders R 2014 Plasma Sources Sci. T. 23 025009Google Scholar

    [14]

    Spencer L F, Gallimore A D 2013 Plasma Sources Sci. T. 22 015019Google Scholar

    [15]

    Wang W, Berthelot A, Kolev S, Tu X, Bogaerts A 2016 Plasma Sources Sci. T. 25 065012Google Scholar

    [16]

    张凯, 张帅, 高远, 孙昊, 严萍, 邵涛 2019 高电压技术 45 1396

    Zhang K, Zhang S, Gao Y, Sun H, Yan P, Shao T 2019 High Voltage Engineering 45 1396

    [17]

    Chen Q, Sun J, Zhang X 2018 Chinese J. Chem. Eng. 26 1041Google Scholar

    [18]

    Ponduri S, Becker M M, Welzel S, van de Sanden M C M, Loffhagen D, Engeln R 2016 J. Appl. Phys. 119 093301Google Scholar

    [19]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C. 116 23257Google Scholar

    [20]

    Capitelli M, Celiberto R, Colonna G, et al. 2011 Plasma Phys. Contr. F. 53 124007Google Scholar

    [21]

    Pietanza L D, Colonna G, D'Ammando G, Capitelli M 2017 Plasma Phys. Contr. F. 59 014035Google Scholar

    [22]

    Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F 2016 Plasma Sources Sci. T. 25 025013Google Scholar

    [23]

    Brehmer F, Welzel S, van de Sanden M C M, Engeln R 2014 J. Appl. Phys. 116 123303Google Scholar

    [24]

    Ozkan A, Dufour T, Bogaerts A, Reniers F 2016 Plasma Sources Sci. T. 25 045016Google Scholar

    [25]

    Gruenwald J 2016 Acta Astronaut. 123 188Google Scholar

    [26]

    Guerra V, Silva T, Ogloblina P, et al. 2017 Plasma Sources Sci. T. 26 11LT01Google Scholar

    [27]

    Ogloblina P, Morillo-Candas A S, Silva A F, et al. 2021 Plasma Sources Sci. T. 30 065005Google Scholar

    [28]

    Zhang B, Zhang X 2020 J. Appl. Phys. 128 083302Google Scholar

    [29]

    Wang C, Fu Q, Chang Z, Zhang G 2021 Plasma Process. Polym. 18 e2000228Google Scholar

    [30]

    Wang C, Yao C, Chang Z, Zhang G 2019 Phys. Plasmas 26 123506Google Scholar

    [31]

    Kozak T, Bogaerts A 2014 Plasma Sources Sci. T. 23 045004Google Scholar

    [32]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [33]

    Land J E 1978 J. Appl. Phys. 49 5716Google Scholar

    [34]

    Lawton S A, Phelps A V 1978 J. Chem. Phys. 69 1055Google Scholar

    [35]

    Hokazono H, Fujimoto H 1987 J. Appl. Phys. 62 1585Google Scholar

    [36]

    Beuthe T G, Chang J S 1997 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 36 4997Google Scholar

    [37]

    Cenian A, Chernukho A, Borodin V, Sliwinski G 1994 Contrib. Plasm. Phys. 34 25Google Scholar

    [38]

    Eliasson B, Hirth M, Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421Google Scholar

    [39]

    Cenian A, Chernukho A, Borodin V 1995 Contrib. Plasm. Phys. 35 273Google Scholar

    [40]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. T. 16 399Google Scholar

    [41]

    Woodall J, Agundez M, Markwick-Kemper A J, Millar T J 2007 Astron. Astrophys. 466 1197Google Scholar

    [42]

    Hadjziane S, Held B, Pignolet P, Peyrous R, Coste C 1992 J. Phys. D Appl. Phys. 25 677Google Scholar

    [43]

    Blauer J A, Nickerson G R 1974 AIAA 7th Fluid and Plasma Dynamics Conference Pal0 Alto, California, June 17–19, 1974 p536

    [44]

    Poncin-Epaillard F, Aouinti M 2002 Plasmas Polym. 7 1Google Scholar

    [45]

    Khan M I, Rehman N U, Khan S, Ullah N, Masood A, Ullah A 2019 AIP Adv. 9 085015Google Scholar

    [46]

    谢维杰 2008 博士学位论文 (上海: 上海交通大学)

    Xie W J 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong Universitty) (in Chinese)

    [47]

    Wang X, Gao Y, Zhang S, Sun H, Li J, Shao T 2019 Appl. Energ. 243 132Google Scholar

    [48]

    Liu Z, Huang B, Zhu W, Zhang C, Tu X, Shao T 2020 Plasma Chem. Plasma P. 40 937Google Scholar

  • [1] Liu Kun, Zuo Jie, Zhou Xiong-Feng, Ran Cong-Fu, Yang Ming-Hao, Geng Wen-Qiang. Physico-chemical mechanism of surface dielectric barrier discharge product change based on spectral diagnosis. Acta Physica Sinica, 2023, 72(5): 055201. doi: 10.7498/aps.72.20222236
    [2] Chen Long, Wang Di-Ya, Chen Jun-Yu, Duan Ping, Yang Ye-Hui, Tan Cong-Qi. Characteristics and suppression methods of low-frequency oscillation in Hall thruster. Acta Physica Sinica, 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [3] Chen Ze-Yu, Peng Yu-Bin, Wang Rui, He Yong-Ning, Cui Wan-Zhao. Reaction dynamic process of low pressure discharge plasma in microwave resonant cavity. Acta Physica Sinica, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [4] Zhang Tai-Heng, Wang Xu-Cheng, Zhang Yuan-Tao. Numerical study on simplified reaction set of ground state species in CO2 discharges under Martian atmospheric conditions. Acta Physica Sinica, 2021, 70(21): 215201. doi: 10.7498/aps.70.20210664
    [5] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu. Cylindric high power impulse magnetron sputtering source and its discharge characteristics. Acta Physica Sinica, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [7] Li Xue-Chen, Chang Yuan-Yuan, Liu Run-Fu, Zhao Huan-Huan, Di Cong. Investigation on the characteristics of dielectric barrier discharge with fairly large volume generated in air at atmospheric pressure. Acta Physica Sinica, 2013, 62(16): 165205. doi: 10.7498/aps.62.165205
    [8] Shi Lei, Qian Mu-Yang, Xiao Kun-Xiang, Li Ming. Simulation study on hydrogen penning source discharge at low pressure. Acta Physica Sinica, 2013, 62(17): 175205. doi: 10.7498/aps.62.175205
    [9] Liu Lei, Li Yong-Dong, Wang Rui, Cui Wan-Zhao, Liu Chun-Liang. Particle-in-cell simulation of corona discharge in low pressure in stepped impedance transformer. Acta Physica Sinica, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [10] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [11] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [12] E Peng, Duan Ping, Wei Li-Qiu, Bai De-Yu, Jiang Bin-Hao, Xu Dian-Guo. Experimental study of vacuum backpressure on the discharge characteristics of a Hall thruster. Acta Physica Sinica, 2010, 59(12): 8676-8684. doi: 10.7498/aps.59.8676
    [13] E Peng, Duan Ping, Jiang Bin-Hao, Liu Hui, Wei Li-Qiu, Xu Dian-Guo. On the effect of magnetic field gradient on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [14] Zhang Xin-Meng, Tian Xiu-Bo, Gong Chun-Zhi, Yang Shi-Qin. Discharge characteristics of confined cathode micro-arc oxidation. Acta Physica Sinica, 2010, 59(8): 5613-5619. doi: 10.7498/aps.59.5613
    [15] E Peng, Han Ke, Wu Zhi-Wen, Yu Da-Ren. On the role of magnetic field intensity effects on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [16] Wang Yan-Hui, Wang De-Zhen. Characteristics of dielectric barrier homogenous discharge at atmospheric pressure in nitrogen. Acta Physica Sinica, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [17] Ouyang Ji-Ting, He Feng, Miao Jin-Song, Feng Shuo. Study of characteristics of coplanar dielectric barrier discharge. Acta Physica Sinica, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [18] LIU DA-WEI. DISCHARGE CHARACTERASTICS OF HIGH PRESSURE FAST DISCHARGE XeCl EXCIMER LASER. Acta Physica Sinica, 1984, 33(11): 1512-1519. doi: 10.7498/aps.33.1512
    [19] GAO ZHI, LIN LIE, SUN WEN-CHAO. A THEORETICAL MODEL FOR TRANSVERSE-DISCHARGE FLOW TYPE CO2 LASERS. Acta Physica Sinica, 1979, 28(6): 807-823. doi: 10.7498/aps.28.807
    [20] LIN GUANG-HAI. THE SATURATION CHARACTERISTICS OF ELECTRIC DISCHARGE CONVECTION CO2 LASER. Acta Physica Sinica, 1978, 27(4): 396-412. doi: 10.7498/aps.27.396
Metrics
  • Abstract views:  5625
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2022
  • Accepted Date:  14 February 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回