Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-metallic atom doped GaN nanotubes: Electronic structure, transport properties, and gate voltage regulating effects

Tang Jia-Xin Fan Zhi-Qiang Deng Xiao-Qing Zhang Zhen-Hua

Citation:

Non-metallic atom doped GaN nanotubes: Electronic structure, transport properties, and gate voltage regulating effects

Tang Jia-Xin, Fan Zhi-Qiang, Deng Xiao-Qing, Zhang Zhen-Hua
PDF
HTML
Get Citation
  • GaN is known as the third generation of semiconductor and holds promising applications. In this present work, one-dimensional zigzag nanotubes derived from GaN are studied in depth, mainly focusing on their chemical bondings, electronic structures, transport properties, and the regulating effects under gate voltage for nanotubes doped with low-concentration non-metallic atoms in main-groups IIIA-VIIA. Some important findings are obtained, such as the chemical bonds around a heteroatom atom, and their average bond length, binding energy, and chemical formation energy are closely related to the atomic number (the atomic radius), and the charge transfer between heteroatom and nanotubes is directly related to their relative electronegativity. More importantly, we find that although the intrinsic nanotube is a semiconductor, when it is doped with non-metallic atoms, the electronic phase of nanotube possesses an obvious odd-even effect. Namely, after being doped by hetero-atoms in main-groups IIIA, VA, VIIA, nanotubes are semiconductors, but they becomes metals after having been doped with hetero-atoms in main-groups IVA and VIA. This phenomenon has a close relation with the lone-paired electronic state. And also, It is found that with atom doping, the difference between carriers’ mobilities (the hole mobility and electron mobility) of semiconducting tubes can be regulated to reach one order of magnitude, especially the hole mobility and electron mobility can be obviously enhanced by a higher gate voltage. For example, when the gate voltage is increased to 18 V, the hole mobility rises nearly 20 times compared with the case without gate voltage.
      Corresponding author: Tang Jia-Xin, csustjxt@163.com ; Zhang Zhen-Hua, zhzhang@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771076, 12074046), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2020JJ4625, 2021JJ30733), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 19A029).
    [1]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451Google Scholar

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [5]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [6]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 817

    [7]

    Huang H, Jiang B, Zou X M, Zhao X Z, Liao L 2019 Sci. Bull. 64 1067Google Scholar

    [8]

    Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J 2014 2D Mater. 1 025001

    [9]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [10]

    Tareen A K, Khan K, Aslam M, Liu X K, Zhang H 2021 Prog. Solid. State Chem. 61 100294Google Scholar

    [11]

    Khan K, Tareen A K, Aslam M, Wang R H, Zhang Y P, Mahmood A, Ouyang Z B, Zhang H, Guo Z Y 2020 J. Mater. Chem. C 8 387Google Scholar

    [12]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223Google Scholar

    [13]

    Camacho-Mojica D C, López-Urías F 2015 Sci. Rep. 5 17902

    [14]

    Al Balushi Z Y, Wang Ke, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X Y, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [15]

    Chen Y X, Liu K L, Liu J X, Lv T R, Wei B, Zhang T, Zeng M Q, Wang Z C, Fu L 2018 J. Am. Chem. Soc. 140 16392Google Scholar

    [16]

    Meng X S, Liu H L, Lin L K, Cheng Y B, Hou X, Zhao S Y, Lu H M, Meng X K 2021 Appl. Surf. Sci. 539 148302Google Scholar

    [17]

    Li S, Xing H Z, Xie R K, ZengY J, Huang Y, Lu A J, Chen X S 2018 Physica E 97 144Google Scholar

    [18]

    Alaal N, Roqan I S 2020 ACS Omega 5 1261Google Scholar

    [19]

    Kadioglu Y, Ersan F, Kecik D, Akturk O U, Akturk E, Ciraci S 2018 Phys. Chem. Chem. Phys. 20 16077Google Scholar

    [20]

    Maier K, Helwig A, Muller G, Hille P, Teubert J, Eickhoff M 2017 Nano Lett. 17 615Google Scholar

    [21]

    Kong Y K, Liu L, Xia S H, Wang H G, Wang M S 2016 Comput. Theor. Chem. 1092 19Google Scholar

    [22]

    Goldberger J, He R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 34 599

    [23]

    Hemmingsson C, Pozina G, Khromov S, Monemar B 2011 Nanotechnology 22 085602Google Scholar

    [24]

    Ribeiro C C, de Jesus Gomes Varela J, Guerini S 2018 J. Mol. Model 24 192Google Scholar

    [25]

    Yang M, Shi J J, Zhang M, Zhang S, Bao Z Q, Luo S J, Zhou T C, Zhu T C, Li X, Li J 2013 Mater. Chem. Phys. 138 225Google Scholar

    [26]

    Moradian R, Azadi S, Farahani S V 2008 Phys. Lett. A 372 6935Google Scholar

    [27]

    Kuang W, Hu R, Fan Z Q, Zhang Z H 2019 Nanotechnology 30 145201Google Scholar

    [28]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [29]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [30]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [31]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [32]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745

    [33]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [34]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [35]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [36]

    Yuan P F, Hu R, Fan Z Q, Zhang Z H 2018 J. Phys.: Condens. Matter 30 445802Google Scholar

    [37]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301Google Scholar

    [38]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [39]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z G 2009 J. Am. Chem. Soc. 131 17728Google Scholar

    [40]

    Yuan P F, Fan Z Q, Zhang Z H 2017 Carbon 124 228Google Scholar

  • 图 1  (a) GaN纳米带的正视图和侧视图(虚线框内为纳米带单胞); (b) GaN纳米管的正视图和侧视图(虚线框内为纳米管单胞); (c) 本征纳米管的能带结构; (d) 掺杂纳米管的原子结构, X表示掺杂原子, d1, d2, d3分别表示掺杂原子周围的三根共价键

    Figure 1.  (a) Top and side views of GaN nanoribbon (the black dashed-line box indicates the unit cell of GaN nanoribbon); (b) top and side views of GaN nanotube (the black dashed-line box represents the unit cell of GaN nanotube); (c) band structure of intrinsic nanotube; (d) the atomic structure of doped nanotube, X represents a doped atom, and d1, d2 and d3 are three covalent bonds around a doped atom, respectively.

    图 2  (a) 纳米管NT-X结合能EB及形成能EF随主族VIA非金属掺杂元素X (= O, S, Se, Te)的变化; (b) 纳米管NT-X结合能EB及形成能EF随第二周期非金属掺杂元素X (= B, C, N, O, F)的变化; (c) NT-X的平均键长$\bar{d}$随主族VIA非金属掺杂元素X (= O, S, Se, Te)的变化; (d) NT-X的平均键长$\bar{d}$随第二周期非金属掺杂元素X (= B, C, N, O, F)的变化

    Figure 2.  (a) Formation energy and binding energy versus doped non-metal elements in group VIA for NT-X (X = O, S, Se, Te); (b) formation energy and binding energy versus doped non-metal elements in second period for NT-X (= B, C, N, O, F); (c) averaged bond length $\bar{d}$ versus doped non-metal elements in group VIA for NT-X (X = O, S, Se, Te); (d) average bond length $\bar{d}$ versus doped non-metal elements in second period for NT-X (= B, C, N, O, F).

    图 3  (a)—(e) B, C, P, O, F掺杂纳米管优化后的几何结构; (f)—(j) B, C, P, O, F掺杂纳米管淬火后的几何结构

    Figure 3.  (a)–(e) Optimized geometry of B, C, P, O and F doped nanotubes; (f)–(j) geometry of B, C, P, O and F doped nanotubes after annealing simulations.

    图 4  (a) 主族VIA非金属元素掺杂的纳米管NT-X (X = O, S, Se, Te)的电荷转移; (b) 第二周期非金属元素掺杂的纳米管NT-X (X = B, C, N, O, F)的电荷转移. 掺杂纳米管的电荷差密度 (c) NT-B; (d) NT-C; (e) NT-P; (f) NT-O; (g) NT-F. 青色表示失去电子, 洋红色表示得到电子, 等值面为0.01e3

    Figure 4.  (a) Charge transfer of group VIA non-metal elements doped NT-X (X = B, C, N, O, F); (b) charge transfer of second period non-metal elements doped NT-X (X = O, S, Se, Te). Charge difference density of doped nanotubes: (c) NT-B; (d) NT-C; (e) NT-P; (f) NT-O; (g) NT-F. Cyan indicates loss of electrons and magenta indicates gain of electrons, and the isosurface is set to 0.01e3.

    图 5  部分NT-X的能带图以及投影态密度图, 左侧为指定子带的部分电荷密度, 虚线框内为掺杂原子的位置 (a) NT-B; (b) NT-C; (c) NT-P; (d) NT-O; (e) NT-F; (f) NT-X的带隙

    Figure 5.  The band structure and projected density of states for part of NT-X, the left panel is the partial charge density for designated subbands, and the position of doped atom is shown in the dotted circle: (a) NT-B; (b) NT-C; (c) NT-P; (d) NT-O; (e) NT-F; (f) the band gap for these NT-X.

    图 6  (a) 半导体性纳米管NT-X (X = B, N, P, As, F, Cl, Br, I)的有效质量m*; (b) NT-X的变形势常数|E1|和拉伸模量C; (c) NT-X的载流子迁移率

    Figure 6.  (a) Effective mass m* of semiconducting nanotubes NT-X (X = B, N, P, As, F, Cl, Br, I); (b) deformation potential constant | E1 | and tensile modulus C of NT-X; (c) carrier mobility of NT-X.

    图 7  (a) NT-P外加栅极电压示意图; (b) 不同栅极电压下NT-P中杂质原子P的电荷转移; (c) 不同栅极电压下NT-P的CBM和VBM的变化; (d) NT-P的有效质量m*随栅极电压的变化; (e) NT-P的变形势常数|E1|和拉伸模量C随栅极电压的变化; (f) NT-P的载流子迁移率随栅极电压的变化

    Figure 7.  (a) The schematic of applied gate voltage on NT-P; (b) electron transfer of hero-atom P in NT-P versus different gate voltages; (c) changes of CBM and VBM under different gate voltages on NT-P; (d) the effective mass m* of NT-P varies with the gate voltage; (e) variation of deformation potential constant |E1| and tensile modulus C of NT-P with gate voltage; (f) the carrier mobility of NT-P varies with the gate voltage.

    表 1  掺杂纳米管NT-X的结合能EB及化学形成能EF, 键长di (i = 1, 2, 3)及平均键长$\bar{d}$, 电荷转移ΔQ(|e|)(负号表示失去电子), 带隙Eg和电子相EP(金属-M, 半导体-S)

    Table 1.  Binding energy EB, formation energy EF, bond length di (i = 1, 2, 3) and averaged bond length $\bar{d}$, charge transfer ΔQ (|e|) (negative sign indicates a loss of electrons), band gap Eg, electronic phase EP (metal-M, semiconductor-S) for the doped nanotubes NT-X.

    Doped atomEB/(eV· atom–1)EF/(eV· atom–1)d1d2d3$\bar{d}$/ÅΔQEg/eVEP
    IIIAB–5.240.112.052.052.042.05+0.080.5S
    IVAC–5.310.051.911.931.931.92+0.4690M
    Si–5.250.112.412.412.402.41–0.2850M
    VAN–5.3601.881.871.871.87+0.6212.18S
    P–5.290.072.342.342.302.33+0.1482.17S
    As–5.270.082.442.442.392.42–0.1862.14S
    VIAO–5.310.041.951.961.941.95+0.6360M
    S–5.250.112.362.372.342.36+0.1790M
    Se–5.210.122.612.612.392.54+0.0910M
    Te–5.210.142.862.842.612.77–0.0820M
    VIIAF–5.250.102.542.761.862.39+0.3672.29S
    Cl–5.200.143.632.223.333.06+0.2652.25S
    Br–5.200.153.343.382.393.04+0.1542.27S
    I–5.190.163.852.573.473.30+0.0762.24S
    DownLoad: CSV
  • [1]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451Google Scholar

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [5]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [6]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 817

    [7]

    Huang H, Jiang B, Zou X M, Zhao X Z, Liao L 2019 Sci. Bull. 64 1067Google Scholar

    [8]

    Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J 2014 2D Mater. 1 025001

    [9]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [10]

    Tareen A K, Khan K, Aslam M, Liu X K, Zhang H 2021 Prog. Solid. State Chem. 61 100294Google Scholar

    [11]

    Khan K, Tareen A K, Aslam M, Wang R H, Zhang Y P, Mahmood A, Ouyang Z B, Zhang H, Guo Z Y 2020 J. Mater. Chem. C 8 387Google Scholar

    [12]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223Google Scholar

    [13]

    Camacho-Mojica D C, López-Urías F 2015 Sci. Rep. 5 17902

    [14]

    Al Balushi Z Y, Wang Ke, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X Y, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [15]

    Chen Y X, Liu K L, Liu J X, Lv T R, Wei B, Zhang T, Zeng M Q, Wang Z C, Fu L 2018 J. Am. Chem. Soc. 140 16392Google Scholar

    [16]

    Meng X S, Liu H L, Lin L K, Cheng Y B, Hou X, Zhao S Y, Lu H M, Meng X K 2021 Appl. Surf. Sci. 539 148302Google Scholar

    [17]

    Li S, Xing H Z, Xie R K, ZengY J, Huang Y, Lu A J, Chen X S 2018 Physica E 97 144Google Scholar

    [18]

    Alaal N, Roqan I S 2020 ACS Omega 5 1261Google Scholar

    [19]

    Kadioglu Y, Ersan F, Kecik D, Akturk O U, Akturk E, Ciraci S 2018 Phys. Chem. Chem. Phys. 20 16077Google Scholar

    [20]

    Maier K, Helwig A, Muller G, Hille P, Teubert J, Eickhoff M 2017 Nano Lett. 17 615Google Scholar

    [21]

    Kong Y K, Liu L, Xia S H, Wang H G, Wang M S 2016 Comput. Theor. Chem. 1092 19Google Scholar

    [22]

    Goldberger J, He R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 34 599

    [23]

    Hemmingsson C, Pozina G, Khromov S, Monemar B 2011 Nanotechnology 22 085602Google Scholar

    [24]

    Ribeiro C C, de Jesus Gomes Varela J, Guerini S 2018 J. Mol. Model 24 192Google Scholar

    [25]

    Yang M, Shi J J, Zhang M, Zhang S, Bao Z Q, Luo S J, Zhou T C, Zhu T C, Li X, Li J 2013 Mater. Chem. Phys. 138 225Google Scholar

    [26]

    Moradian R, Azadi S, Farahani S V 2008 Phys. Lett. A 372 6935Google Scholar

    [27]

    Kuang W, Hu R, Fan Z Q, Zhang Z H 2019 Nanotechnology 30 145201Google Scholar

    [28]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [29]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [30]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [31]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [32]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745

    [33]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [34]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [35]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [36]

    Yuan P F, Hu R, Fan Z Q, Zhang Z H 2018 J. Phys.: Condens. Matter 30 445802Google Scholar

    [37]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301Google Scholar

    [38]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [39]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z G 2009 J. Am. Chem. Soc. 131 17728Google Scholar

    [40]

    Yuan P F, Fan Z Q, Zhang Z H 2017 Carbon 124 228Google Scholar

  • [1] Lu Kang-Jun, Wang Yi-Fan, Xia Qian, Zhang Gui-Tao, Chen Qian. Structural phase transition induced enhancement of carrier mobility of monolayer RuSe2. Acta Physica Sinica, 2024, 73(14): 146302. doi: 10.7498/aps.73.20240557
    [2] Pan Jia-Ping, Zhang Ye-Wen, Li Jun, Lü Tian-Hua, Zheng Fei-Hu. Migration behavior of space charge packet researched by using electron beam irradiation and real-time space charge distribution measurement in piezo-pressure wave propagation (PWP) method. Acta Physica Sinica, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [3] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electronic properties and modulation effects on edge-modified GeS2 nanoribbons. Acta Physica Sinica, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [4] Wang SongWen, Guo HongXia, Ma Teng, Lei ZhiFeng, Ma WuYing, Zhong XiangLi, Zhang Hong, Lu XiaoJie, Li JiFang, Fang JunLin, Zeng TianXiang. Electrical stress of graphene field effect transistor under different bias voltages Reliability studies. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.20241365
    [5] Wang Song-Wen, Guo Hong-Xia, Ma Teng, Lei Zhi-Feng, Ma Wu-Ying, Zhong Xiang-Li, Zhang Hong, Lu Xiao-Jie, Li Ji-Fang, Fang Jun-Lin, Zeng Tian-Xiang. Electrical stress reliability of graphene field effect transistor under different bias voltages. Acta Physica Sinica, 2024, 73(23): 238501. doi: 10.7498/aps.73.20241365
    [6] Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Structural stability, electronic properties, and physical modulation effects of armchair-edged C3B nanoribbons. Acta Physica Sinica, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [7] Han Jia-Ning, Huang Jun-Ming, Cao Sheng-Guo, Li Zhan-Hai, Zhang Zhen-Hua. Magneto-electronic property and strain regulation for non-metal atom doped armchair arsenene nanotubes. Acta Physica Sinica, 2023, 72(19): 197101. doi: 10.7498/aps.72.20230644
    [8] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [9] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [10] Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei. Gate capacitance model of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [11] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [12] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [13] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [14] Zhou Xing-Ye, Lv Yuan-Jie, Tan Xin, Wang Yuan-Gang, Song Xu-Bo, He Ze-Zhao, Zhang Zhi-Rong, Liu Qing-Bin, Han Ting-Ting, Fang Yu-Long, Feng Zhi-Hong. Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement. Acta Physica Sinica, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [15] Chen Hang-Yu, Song Jian-Jun, Zhang Jie, Hu Hui-Yong, Zhang He-Ming. New experimental discovery of channel crystal plane and orientation selection for small-sized uniaxial strained Si PMOS. Acta Physica Sinica, 2018, 67(6): 068501. doi: 10.7498/aps.67.20172138
    [16] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [17] Yu Chen-Hui, Luo Xiang-Dong, Zhou Wen-Zheng, Luo Qing-Zhou, Liu Pei-Sheng. Investigation on the current collapse effect of AlGaN/GaN/InGaN/GaN double-heterojunction HEMTs. Acta Physica Sinica, 2012, 61(20): 207301. doi: 10.7498/aps.61.207301
    [18] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [19] Gu Jiang, Wang Qiang, Lu Hong. Current collapse effect, interfacial thermal resistance and work temperature for AlGaN/GaN HEMTs. Acta Physica Sinica, 2011, 60(7): 077107. doi: 10.7498/aps.60.077107
    [20] LI ZHI-FENG, LU WEI, YE HONG-JUAN, YUAN XIAN-ZHANG, SHEN XUE-CHU, G.Li, S.J.Chua. OPTICAL SPECTROSCOPY STUDY ON CARRIER CONCENTRATION AND MOBILITY IN GaN. Acta Physica Sinica, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
Metrics
  • Abstract views:  5587
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2021
  • Accepted Date:  16 February 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回