Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement

Zhou Xing-Ye Lv Yuan-Jie Tan Xin Wang Yuan-Gang Song Xu-Bo He Ze-Zhao Zhang Zhi-Rong Liu Qing-Bin Han Ting-Ting Fang Yu-Long Feng Zhi-Hong

Citation:

Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement

Zhou Xing-Ye, Lv Yuan-Jie, Tan Xin, Wang Yuan-Gang, Song Xu-Bo, He Ze-Zhao, Zhang Zhi-Rong, Liu Qing-Bin, Han Ting-Ting, Fang Yu-Long, Feng Zhi-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Deep-level trapping effect is one of the most critical issues that restrict the performance improvement of GaN-based microwave power devices. It is of very importance for material growth and device development to study the trapping behavior in the device. In the past decades, there have been made a lot of efforts to characterize and investigate the deep-level trapping phenomena. However, most of the previous researches focused on the large-scale devices. For pursuing higher frequency, the devices need to be scaled down. Consequently, it becomes more difficult to characterize the deep-level traps in small-scale GaN-based devices, since none of the traditional characterization techniques such as capacitance-voltage (C-V) measurement and capacitance deep-level transient spectroscopy (C-DLTS) are applicable to small devices. Pulsed I-V measurement and transient simulation are useful techniques for analyzing trapping effects in AlGaN/GaN high electron mobility transitors (HEMTs). In this work, AlGaN/GaN metal-oxide-semiconductor HEMTs (MOSHEMTs) with very short gate length (Lg=80 nm) are fabricated. Based on the pulsed I-V measurement and two-dimensional transient simulation, the influence of deep-level trap on the dynamic characteristic of short-gate AlGaN/GaN MOSHEMT is investigated. First, the pulsed I-V characteristics of AlGaN/GaN MOSHEMT with different quiescent bias voltages are studied. In addition, the current collapse induced by the trapping effect is extracted as a function of the quiescent bias voltage. Furthermore, the transient current of AlGaN/GaN MOSHEMT is simulated with the calibrated model, and the simulation exhibits a similar result to the measurement. Moreover, the physical mechanism of trapping effect in the device is analyzed based on the experimental data and simulation results. It is shown that the current collapse of AlGaN/GaN MOSHEMT varies non-monotonically with the increase of the gate quiescent bias voltage, which results from the combination effect of the gate leakage injection-related and hot electron injection-related mechanism. In the off state, the current collapse is mainly induced by the traps below the gate, which is dominated by the gate leakage injection mechanism, leading to the decrease of current collapse with the increase of the gate bias voltage. In the on state, the hot electron injection mechanism becomes the dominant factor for trapping effect in the drain access region, resulting in the increase of current collapse. The results in this work indicate that the trap-induced current collapse can be further suppressed by improving the quality of gate dielectric to minimize the gate reverse leakage and by reducing the trap density in the epitaxial layer.
      Corresponding author: Lv Yuan-Jie, yuanjielv@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61604137, 61674130).
    [1]

    Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE Trans. Microw. Theory Tech. 60 1764

    [2]

    Pu Y, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2011 Chin. Phys. B 20 097305

    [3]

    Zhang C, Wang M, Xie B, Wen C P, Wang J, Hao Y, Wu W, Chen K J, Shen B 2015 IEEE Trans. Electron Dev. 62 2475

    [4]

    Meneghesso G, Verzellesi G, Pierobon R, Rampazzo F, Chini A, Mishra U K, Canali C, Zanoni E 2004 IEEE Trans. Electron Dev. 51 1554

    [5]

    Tirado J M, Sanchez-Rojas J L, Izpura J I 2007 IEEE Trans. Electron Dev. 54 410

    [6]

    Wang M, Yan D, Zhang C, Xie B, Wen C P, Wang J, Hao Y, Wu W, Shen B 2014 IEEE Electron Dev. Lett. 35 1094

    [7]

    Meneghini M, Rossetto I, Bisi D, Stocco A, Chini A, Pantellini A, Lanzieri C, Nanni A, Meneghesso G, Zanoni E 2014 IEEE Trans. Electron Dev. 61 4070

    [8]

    Bisi D, Meneghini M, Santi C, Chini A, Dammann M, Brckner P, Mikulla M, Meneghesso G, Zanoni E 2013 IEEE Trans. Electron Dev. 60 3166

    [9]

    Braga N, Mickevicius R 2004 Appl. Phys. Lett. 85 4780

    [10]

    Chini A, Lecce V D, Esposto M, Meneghesso G, Zanoni E 2009 IEEE Electron Dev. Lett. 30 1021

    [11]

    Miccoli C, Martino V C, Reina S, Rinaudo S 2013 IEEE Electron Dev. Lett. 34 1121

    [12]

    Zhou X, Feng Z, Wang L, Wang Y, Lv Y, Dun S, Cai S 2014 Solid-State Electron. 100 15

    [13]

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301 (in Chinese)[余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301]

    [14]

    Gu J, Lu H, Wang Q 2011 Acta Phys. Sin. 60 077107 (in Chinese)[顾江, 鲁宏, 王强 2011 物理学报 60 077107]

    [15]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [16]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [17]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [18]

    Zhang G C, Feng S W, Zhou Z, Li J W, Guo C S 2011 Chin. Phys. B 20 027202

    [19]

    Zhang Y, Feng S, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [20]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [21]

    Badmaev A, Che Y C, Li Z, Wang C, Zhou C W 2012 ACS Nano 6 3371

    [22]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, L Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501

  • [1]

    Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE Trans. Microw. Theory Tech. 60 1764

    [2]

    Pu Y, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2011 Chin. Phys. B 20 097305

    [3]

    Zhang C, Wang M, Xie B, Wen C P, Wang J, Hao Y, Wu W, Chen K J, Shen B 2015 IEEE Trans. Electron Dev. 62 2475

    [4]

    Meneghesso G, Verzellesi G, Pierobon R, Rampazzo F, Chini A, Mishra U K, Canali C, Zanoni E 2004 IEEE Trans. Electron Dev. 51 1554

    [5]

    Tirado J M, Sanchez-Rojas J L, Izpura J I 2007 IEEE Trans. Electron Dev. 54 410

    [6]

    Wang M, Yan D, Zhang C, Xie B, Wen C P, Wang J, Hao Y, Wu W, Shen B 2014 IEEE Electron Dev. Lett. 35 1094

    [7]

    Meneghini M, Rossetto I, Bisi D, Stocco A, Chini A, Pantellini A, Lanzieri C, Nanni A, Meneghesso G, Zanoni E 2014 IEEE Trans. Electron Dev. 61 4070

    [8]

    Bisi D, Meneghini M, Santi C, Chini A, Dammann M, Brckner P, Mikulla M, Meneghesso G, Zanoni E 2013 IEEE Trans. Electron Dev. 60 3166

    [9]

    Braga N, Mickevicius R 2004 Appl. Phys. Lett. 85 4780

    [10]

    Chini A, Lecce V D, Esposto M, Meneghesso G, Zanoni E 2009 IEEE Electron Dev. Lett. 30 1021

    [11]

    Miccoli C, Martino V C, Reina S, Rinaudo S 2013 IEEE Electron Dev. Lett. 34 1121

    [12]

    Zhou X, Feng Z, Wang L, Wang Y, Lv Y, Dun S, Cai S 2014 Solid-State Electron. 100 15

    [13]

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301 (in Chinese)[余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301]

    [14]

    Gu J, Lu H, Wang Q 2011 Acta Phys. Sin. 60 077107 (in Chinese)[顾江, 鲁宏, 王强 2011 物理学报 60 077107]

    [15]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [16]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [17]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [18]

    Zhang G C, Feng S W, Zhou Z, Li J W, Guo C S 2011 Chin. Phys. B 20 027202

    [19]

    Zhang Y, Feng S, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [20]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [21]

    Badmaev A, Che Y C, Li Z, Wang C, Zhou C W 2012 ACS Nano 6 3371

    [22]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, L Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501

  • [1] Lü Ling, Xing Mu-Han, Xue Bo-Rui, Cao Yan-Rong, Hu Pei-Pei, Zheng Xue-Feng, Ma Xiao-Hua, Hao Yue. Effect of heavy ion radiation on low frequency noise characteristics of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] Lei Zhen-Shuai, Sun Xiao-Wei, Liu Zi-Jiang, Song Ting, Tian Jun-Hong. Phase diagram prediction and high pressure melting characteristics of GaN. Acta Physica Sinica, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [3] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [4] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [7] Zhu Yan-Xu, Song Hui-Hui, Wang Yue-Hua, Li Lai-Long, Shi Dong. Design and fabrication of high electron mobility transistor devices with gallium nitride-based. Acta Physica Sinica, 2017, 66(24): 247203. doi: 10.7498/aps.66.247203
    [8] Wang Kai, Xing Yan-Hui, Han Jun, Zhao Kang-Kang, Guo Li-Jian, Yu Bao-Ning, Deng Xu-Guang, Fan Ya-Ming, Zhang Bao-Shun. Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [9] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [10] Liu Mu-Lin, Min Qiu-Ying, Ye Zhi-Qing. Efficiency droop in blue InGaN/GaN light emitting diodes on Si substrate. Acta Physica Sinica, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [11] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [12] Li Shui-Qing, Wang Lai, Han Yan-Jun, Luo Yi, Deng He-Qing, Qiu Jian-Sheng, Zhang Jie. A new growth method of roughed p-GaN in GaN-based light emitting diodes. Acta Physica Sinica, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [13] Shen Guang-Di, Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling. Research on effects of current spreading and optimized contact scheme for high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [14] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Liu Jian, Liu Xin-Yu, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [15] Nie Hai, Zhang Bo, Tang Xian-Zhong. Electroluminescence of polymer doped small-molecules light-emitting diodes and the effects of doping trap. Acta Physica Sinica, 2007, 56(1): 263-267. doi: 10.7498/aps.56.263
    [16] Li Xiao, Zhang Hai-Ying, Yin Jun-Jian, Liu Liang, Xu Jing-Bo, Li Ming, Ye Tian-Chun, Gong Min. Research of breakdown characteristic of InP composite channel HEMT. Acta Physica Sinica, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [17] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [18] Liu Hong-Xia, Hao Yue, Zhang Tao, Zheng Xue-Feng, Ma Xiao-Hua. Study on the kink effect in AlGaAs/InGaAs/GaAs PHEMTs. Acta Physica Sinica, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [19] Yang Lin-An, Zhang Yi-Men, Yu Chun-Li, Zhang Yu-Ming. Trapping effect modeling for SiC power MESFETs. Acta Physica Sinica, 2003, 52(2): 302-306. doi: 10.7498/aps.52.302
    [20] Lv YONG-LIANG, ZHOU SHI-PING, XU DE-MING. ANALYSIS OF PROPERTIES OF HIGH-ELECTRON-MOBILITY-TRANSISTOR UNDER OPTICAL ILLUMI NATION. Acta Physica Sinica, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
Metrics
  • Abstract views:  7159
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2018
  • Accepted Date:  07 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回