Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt)

Fang Wen-Yu Chen Yue Ye Pan Wei Hao-Ran Xiao Xing-Lin Li Ming-Kai Ahuja Rajeev He Yun-Bin

Citation:

Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt)

Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin
PDF
HTML
Get Citation
  • Based on the first-principles calculations, the stability, elastic constants, electronic structure, and lattice thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt) are investigated in this work. The results show that XO2 (X = Ni, Pd, Pt) have mechanical and dynamic stability at the same time. In addition, the Young’s modulus of monolayer NiO2, PdO2 and PtO2 are 124.69 N·m–1, 103.31 N·m–1 and 116.51 N·m–1, Poisson’s ratio of monolayer NiO2, PdO2 and PtO2 are 0.25, 0.24 and 0.27, respectively, and each of them possesses high isotropy. The band structures show that monolayer XO2 (X = Ni, Pd, Pt) are indirect band-gap semiconductors with energy gap of 2.95 eV, 3.00 eV and 3.34 eV, respectively, and the energy levels near the valence band maximum and conduction band minimum are mainly composed of Ni-3d/Pd-4d/Pt-5d and O-2p orbital electrons. Based on deformation potential theory, the carrier mobility of each monolayer is calculated, and the results show that the effective mass and deformation potential of monolayer XO2 (X = Ni, Pd, Pt) along the armchair and zigzag directions show obvious anisotropy, and the highest electron and hole mobility are 13707.96 and 53.25 cm2·V–1·s–1, 1288.12 and 19.18 cm2·V–1·s–1, and 404.71 and 270.60 cm2·V–1·s–1 for NiO2, PdO2 and PtO2, respectively. Furthermore, the lattice thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt) at 300 K are 53.55 W·m–1·K–1, 19.06 W·m–1·K–1 and 17.43 W·m–1·K–1, respectively. These properties indicate that monolayer XO2 (X = Ni, Pd, Pt) have potential applications in nanometer electronic materials and thermal conductivity devices.
      Corresponding author: Li Ming-Kai, mkli@hubu.edu.cn ; He Yun-Bin, ybhe@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874040, 11774082, 11975093), the National Key R&D Program of China (Grant No. 2019YFB1503500), the Creative Research Groups of Natural Science Foundation of Hubei Province, China (Grant No. 2019CFA006), and the Program for Science and Technology Innovation Team in Colleges of Hubei Province, China (Grant No. T201901)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Wang D, Song X L, Li P, Gao X J J, Gao X F 2020 J. Mater. Chem. B 8 9028Google Scholar

    [3]

    Halo M, Casassa S, Maschio L, Pisani C, Dovesi R, Ehinon D, Baraille I, Rerat M, Usvyat D 2011 Phys. Chem. Chem. Phys. 13 4434Google Scholar

    [4]

    Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar

    [5]

    Fang W Y, Kang W B, Zhao J, Zhang P C 2020 Chin. Phys. B 29 096301Google Scholar

    [6]

    Yeoh K H, Yoon T L, Rusi, Ong D S, Lim T L 2018 Appl. Surf. Sci. 445 161Google Scholar

    [7]

    Yuan J H, Yu N N, Xue K H, Miao X S 2017 Appl. Surf. Sci. 409 85Google Scholar

    [8]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar

    [9]

    Yang Y, Zhang H, Song L H, Liu Z L 2021 Appl. Surf. Sci. 542 148691Google Scholar

    [10]

    Li X B, Guo P, Cao T F, Liu H, Lau W M, Liu L M 2015 Sci. Rep. 5 10848Google Scholar

    [11]

    Sharma S, Kumar S, Schwingenschlögl U 2017 Phys. Rev. Appl. 8 044013Google Scholar

    [12]

    Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W, Li S C 2020 Nano Lett. 20 8408Google Scholar

    [13]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [14]

    Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y 2019 Nano Lett. 19 1227Google Scholar

    [15]

    Yan P, Gao G Y, Ding G Q, Qin D 2019 Rsc Adv. 9 12394Google Scholar

    [16]

    Naghavi S S, He J, Xia Y, Wolverton C 2018 Chem. Mater. 30 5639Google Scholar

    [17]

    Hu Z Y, Li K Y, Lu Y, Huang Y, Shao X H 2017 Nanoscale 9 16093Google Scholar

    [18]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar

    [19]

    Chen Z Y, Xiong M, Zeng Z Y, Chen X R, Chen Q F 2021 Solid State Commun. 326 114163Google Scholar

    [20]

    Rajput K, Roy D R 2019 Appl. Nanosci. 9 1845Google Scholar

    [21]

    Qu L H, Yu J, Mu Y L, Fu X L, Zhong C G, Min Y, Zhou P X, Zhang J M, Zou Y Q, Lu T S 2019 Mater. Res. Bull. 119 110533Google Scholar

    [22]

    Chaurasiya R, Dixit A, Pandey R 2019 J. Appl. Phys. 125 082540Google Scholar

    [23]

    Ersan F, Ozaydin H D, Gokoglu G, Akturk E 2017 Appl. Surf. Sci. 425 301Google Scholar

    [24]

    Cakir D, Peeters F M, Sevik C 2014 Appl. Phys. Lett. 104 203110Google Scholar

    [25]

    Shukla A, Gaur N K 2020 Chem. Phys. Lett. 754 137717Google Scholar

    [26]

    Shang J, Li C, Tang X, Du A J, Liao T, Gu Y T, Ma Y D, Kou L Z, Chen C F 2020 Nanoscale 12 14847Google Scholar

    [27]

    Chaouche A C, Lachebi A, Abid H, Benchehima M, Driz M 2019 Superlattices Microstruct. 130 249Google Scholar

    [28]

    Zhu Y Y, Ji X, Cheng S, Chern Z Y, Jia J, Yang L F, Luo H W, Yu J Y, Peng X W, Wang J H, Zhou W J, Liu M L 2019 Acs Nano 13 9091Google Scholar

    [29]

    Wang Y J, Li F F, Zheng H L, Han X F, Yan Y 2018 Phys. Chem. Chem. Phys. 20 28162Google Scholar

    [30]

    Huang Q J, Ma J L, Xu D W, Hu R, Luo X B 2020 J. Appl. Phys. 128 185111Google Scholar

    [31]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [32]

    Yuan J H, Song Y Q, Chen Q, Xue K H, Miao X S 2019 Appl. Surf. Sci. 469 456Google Scholar

    [33]

    Ho T H, Dong H C, Bui V Q, Kawazoe Y, Le H M 2020 Phys. Chem. Chem. Phys. 22 18149Google Scholar

    [34]

    Yuan H, Li Z Y, Yang J L 2018 J. Mater. Chem. C 6 9055Google Scholar

    [35]

    Mohammed H A H, Dongho-Nguimdo G M, Joubert D P 2021 Physica E 127 114514Google Scholar

    [36]

    Lei Z H, Wang W L, She J C 2021 Chin. Phys. B 30 047102Google Scholar

    [37]

    Shimazaki T, Suzuki T, Kubo M 2011 Theor. Chem. Acc. 130 1031Google Scholar

    [38]

    Shokri A, Yazdani A, Rahimi K 2020 Mater. Chem. Phys. 255 123617Google Scholar

    [39]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [40]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [43]

    Blochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [44]

    Eriksson F, Fransson E, Erhart P 2019 Adv. Theor. Simul. 2 1800184Google Scholar

    [45]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [46]

    Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar

    [47]

    Zhang C Z, Liu J Y, Shen H M, Lo X Z, Sun Q 2017 Chem. Mater. 29 8588Google Scholar

    [48]

    Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y 2014 J. Chem. Phys. 140 114702Google Scholar

    [49]

    Qin Y, Zha X H, Bai X, Luo K, Huang Q, Wang Y, Du S 2020 J. Phys.: Condens. Matter 32 135302Google Scholar

    [50]

    Xiong W Q, Huang K X, Yuan S J 2019 J. Mater. Chem. C 7 13518Google Scholar

    [51]

    Lajevardipour A, Neek-Amal M, Peeters F M 2012 J. Phys-Condens. Mat. 24 175303Google Scholar

    [52]

    Hess P 2017 Nanotechnology 28 064002Google Scholar

    [53]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [54]

    Jain A, McGaughey A J 2015 Sci. Rep. 5 8501Google Scholar

    [55]

    Hossain M T, Rahman M A 2020 J. Mol. Model. 26 40Google Scholar

    [56]

    Min K, Aluru N R 2011 Appl. Phys. Lett. 98 013113Google Scholar

    [57]

    Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406Google Scholar

    [58]

    Jing Y, Ma Y D, Li Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [59]

    Pu C Y, Yu J H, Yu R M, Tang X, Zhou D W 2019 J. Mater. Chem. C 7 12231Google Scholar

    [60]

    Zha X H, Zhou J, Luo K, Lang J J, Huang Q, Zhou X, Francisco J S, He J, Du S 2017 J. Phys.: Condens. Matter. 29 165701Google Scholar

    [61]

    Xu Y, Liu G, Xing S A, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar

    [62]

    Fei R X, Li Y 2014 Nano Lett. 14 2884Google Scholar

    [63]

    Fang R H, Cui X Y, Stampfl C, Ringer S P, Zheng R K 2020 Phys. Chem. Chem. Phys. 22 2276Google Scholar

    [64]

    Zeng L, Xin Z, Chen S W, Du G, Kang J F, Liu X Y 2014 Chinese Phys. Lett. 31 027301Google Scholar

    [65]

    Nemec H, Kratochvilova I, Kuzel P, Sebera J, Kochalska A, Nozar J, Nespurek S 2011 Phys. Chem. Chem. Phys. 13 2850Google Scholar

    [66]

    Hong Y, Zhang J, Huang X, Zeng X C 2015 Nanoscale 7 18716Google Scholar

    [67]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [68]

    Peng B, Zhang H, Shao H Z, Xu Y C, Zhang X C, Zhu H Y 2016 Sci. Rep-Uk 6 20225Google Scholar

    [69]

    Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar

    [70]

    Cai Y Q, Lan J H, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 035438Google Scholar

    [71]

    Zulfiqar M, Zhao Y C, Li G, Li Z C, Ni J 2019 Sci. Rep-Uk 9 4571Google Scholar

    [72]

    Feng T, Ruan X 2018 Phys. Rev. B 97 045202Google Scholar

    [73]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [74]

    Chen X K, Chen K Q 2020 J. Phys.: Condens. Matter. 32 153002Google Scholar

  • 图 1  二维XO2 (X = Ni, Pd, Pt)的晶体结构 (a) 俯视图; (b), (c) 侧视图; (d) K点路径

    Figure 1.  Crystal structures of monolayer XO2 (X = Ni, Pd, Pt): (a) Top view; (b), (c) side view; (d) K points path.

    图 2  不同相结构的XO2的结合能 (a) NiO2; (b) PdO2; (c) PtO2

    Figure 2.  Binding energies of XO2 with different phase structures: (a) NiO2; (b) PdO2; (c) PtO2.

    图 3  二维XO2 (X = Ni, Pd, Pt)的(a) 杨氏模量、(b) 泊松比和 (c) 应力-应变曲线

    Figure 3.  (a) Young's modulus, (b) Poisson's ratio, and (c) stress-strain curves of monolayer XO2 (X = Ni, Pd, Pt).

    图 4  二维XO2 (X = Ni, Pd, Pt)电子局域函数 (a) NiO2; (b) PdO2; (c) PtO2

    Figure 4.  Electron localization functions (ELFs) of (a) NiO2, (b) PdO2, (c) PtO2 plotted in a 2 × 2 × 1 supercell.

    图 5  二维XO2 (X = Ni, Pd, Pt)能带结构和分波态密度 (a) NiO2; (b) PdO2; (c) PtO2

    Figure 5.  Band structures and density of states of monolayer XO2 (X = Ni, Pd, Pt) (a) NiO2; (b) PdO2; (c) PtO2.

    图 6  二维XO2 (X = Ni, Pd, Pt)平面刚度和形变势拟合曲线 (a)−(c) NiO2; (d)−(f) PdO2; (g)−(i) PtO2. (a), (d), (g)能量对单轴应变的二次项拟合来计算平面刚度; (b)和(c), (e)和(f), (h)和(i) 沿扶手椅和之字形方向价带顶和导带底的能量对应变量的线性拟合, 用于计算变形势

    Figure 6.  Schematic diagram of plane stiffness and deformation potential of monolayer XO2 (X = Ni, Pd, Pt): (a)−(c) NiO2; (d)−(f) PdO2; (g)−(i) PtO2. (a), (d), (g) Quadratic fitting of the energy difference to the uniaxial strain are used to calculate the plane stiffness. (b) and (c), (e) and (f), (h) and (i) Linear fitting of the energy of VBM and CBM relative to the uniaxial strain along armchair and zigzag direction, which are used to calculate the deformation potential.

    图 7  二维XO2 (X = Ni, Pd, Pt)的(a)−(c) 声子谱、(d)−(f) 声子群速度和 (g)−(i) 声子寿命

    Figure 7.  (a)−(c) Phonon dispersion, (d)−(f) group velocities and (g)−(i) phonon lifetimes of monolayer XO2 (X = Ni, Pd, Pt)

    图 8  二维XO2 (X = Ni, Pd, Pt)的晶格热导率

    Figure 8.  Lattice thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt).

    表 1  二维XO2 (X = Ni, Pd, Pt)结构参数和结合能

    Table 1.  Structure parameters and binding energies of monolayer XO2 (X = Ni, Pd, Pt).

    Monolayersa/blθ1/(°)θ2/(°)hEf/(eV·atom–1)Band gap/eV
    PBEPBE + SOCHSE06
    NiO22.821.8896.8483.161.905.781.391.212.95
    PdO23.072.0398.5481.461.964.931.501.403.00
    PtO23.132.0599.6480.341.935.771.831.733.34
    DownLoad: CSV

    表 2  在300 K下, 二维XO2 (X = Ni, Pd, Pt)的有效质量(m*)、弹性模量(C 2D)、形变势(El)、电子和空穴迁移率(μ)

    Table 2.  Calculated effective mass (m*), elastic modulus (C 2D), deformation-potential constant (El), electron and hole mobility (μ) of monolayer XO2 (X = Ni, Pd, Pt) at 300 K.

    MaterialsDirectionCarrier typem*/m0C 2D/(N·m–1)El/eVμ/(cm2·V–1·s–1)
    NiO2ArmchairElectron0.63134.810.5613707.96
    Hole2.002.2953.25
    ZigzagElectron1.80135.210.881944.53
    Hole13.192.268.32
    PdO2ArmchairElectron0.81113.381.281288.12
    Hole2.523.0219.18
    ZigzagElectron2.42114.252.10162.17
    Hole11.813.014.16
    PtO2ArmchairElectron0.80122.604.27404.71
    Hole1.171.51270.60
    ZigzagElectron2.51123.254.2740.46
    Hole8.771.5140.86
    BPa-axisElectron0.1724.811.592652.06
    Hole0.162.66495.37
    b-axisElectron1.25105.455.27140.35
    Hole5.710.1324469.72
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Wang D, Song X L, Li P, Gao X J J, Gao X F 2020 J. Mater. Chem. B 8 9028Google Scholar

    [3]

    Halo M, Casassa S, Maschio L, Pisani C, Dovesi R, Ehinon D, Baraille I, Rerat M, Usvyat D 2011 Phys. Chem. Chem. Phys. 13 4434Google Scholar

    [4]

    Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar

    [5]

    Fang W Y, Kang W B, Zhao J, Zhang P C 2020 Chin. Phys. B 29 096301Google Scholar

    [6]

    Yeoh K H, Yoon T L, Rusi, Ong D S, Lim T L 2018 Appl. Surf. Sci. 445 161Google Scholar

    [7]

    Yuan J H, Yu N N, Xue K H, Miao X S 2017 Appl. Surf. Sci. 409 85Google Scholar

    [8]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar

    [9]

    Yang Y, Zhang H, Song L H, Liu Z L 2021 Appl. Surf. Sci. 542 148691Google Scholar

    [10]

    Li X B, Guo P, Cao T F, Liu H, Lau W M, Liu L M 2015 Sci. Rep. 5 10848Google Scholar

    [11]

    Sharma S, Kumar S, Schwingenschlögl U 2017 Phys. Rev. Appl. 8 044013Google Scholar

    [12]

    Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W, Li S C 2020 Nano Lett. 20 8408Google Scholar

    [13]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [14]

    Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y 2019 Nano Lett. 19 1227Google Scholar

    [15]

    Yan P, Gao G Y, Ding G Q, Qin D 2019 Rsc Adv. 9 12394Google Scholar

    [16]

    Naghavi S S, He J, Xia Y, Wolverton C 2018 Chem. Mater. 30 5639Google Scholar

    [17]

    Hu Z Y, Li K Y, Lu Y, Huang Y, Shao X H 2017 Nanoscale 9 16093Google Scholar

    [18]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar

    [19]

    Chen Z Y, Xiong M, Zeng Z Y, Chen X R, Chen Q F 2021 Solid State Commun. 326 114163Google Scholar

    [20]

    Rajput K, Roy D R 2019 Appl. Nanosci. 9 1845Google Scholar

    [21]

    Qu L H, Yu J, Mu Y L, Fu X L, Zhong C G, Min Y, Zhou P X, Zhang J M, Zou Y Q, Lu T S 2019 Mater. Res. Bull. 119 110533Google Scholar

    [22]

    Chaurasiya R, Dixit A, Pandey R 2019 J. Appl. Phys. 125 082540Google Scholar

    [23]

    Ersan F, Ozaydin H D, Gokoglu G, Akturk E 2017 Appl. Surf. Sci. 425 301Google Scholar

    [24]

    Cakir D, Peeters F M, Sevik C 2014 Appl. Phys. Lett. 104 203110Google Scholar

    [25]

    Shukla A, Gaur N K 2020 Chem. Phys. Lett. 754 137717Google Scholar

    [26]

    Shang J, Li C, Tang X, Du A J, Liao T, Gu Y T, Ma Y D, Kou L Z, Chen C F 2020 Nanoscale 12 14847Google Scholar

    [27]

    Chaouche A C, Lachebi A, Abid H, Benchehima M, Driz M 2019 Superlattices Microstruct. 130 249Google Scholar

    [28]

    Zhu Y Y, Ji X, Cheng S, Chern Z Y, Jia J, Yang L F, Luo H W, Yu J Y, Peng X W, Wang J H, Zhou W J, Liu M L 2019 Acs Nano 13 9091Google Scholar

    [29]

    Wang Y J, Li F F, Zheng H L, Han X F, Yan Y 2018 Phys. Chem. Chem. Phys. 20 28162Google Scholar

    [30]

    Huang Q J, Ma J L, Xu D W, Hu R, Luo X B 2020 J. Appl. Phys. 128 185111Google Scholar

    [31]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [32]

    Yuan J H, Song Y Q, Chen Q, Xue K H, Miao X S 2019 Appl. Surf. Sci. 469 456Google Scholar

    [33]

    Ho T H, Dong H C, Bui V Q, Kawazoe Y, Le H M 2020 Phys. Chem. Chem. Phys. 22 18149Google Scholar

    [34]

    Yuan H, Li Z Y, Yang J L 2018 J. Mater. Chem. C 6 9055Google Scholar

    [35]

    Mohammed H A H, Dongho-Nguimdo G M, Joubert D P 2021 Physica E 127 114514Google Scholar

    [36]

    Lei Z H, Wang W L, She J C 2021 Chin. Phys. B 30 047102Google Scholar

    [37]

    Shimazaki T, Suzuki T, Kubo M 2011 Theor. Chem. Acc. 130 1031Google Scholar

    [38]

    Shokri A, Yazdani A, Rahimi K 2020 Mater. Chem. Phys. 255 123617Google Scholar

    [39]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [40]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [43]

    Blochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [44]

    Eriksson F, Fransson E, Erhart P 2019 Adv. Theor. Simul. 2 1800184Google Scholar

    [45]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [46]

    Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar

    [47]

    Zhang C Z, Liu J Y, Shen H M, Lo X Z, Sun Q 2017 Chem. Mater. 29 8588Google Scholar

    [48]

    Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y 2014 J. Chem. Phys. 140 114702Google Scholar

    [49]

    Qin Y, Zha X H, Bai X, Luo K, Huang Q, Wang Y, Du S 2020 J. Phys.: Condens. Matter 32 135302Google Scholar

    [50]

    Xiong W Q, Huang K X, Yuan S J 2019 J. Mater. Chem. C 7 13518Google Scholar

    [51]

    Lajevardipour A, Neek-Amal M, Peeters F M 2012 J. Phys-Condens. Mat. 24 175303Google Scholar

    [52]

    Hess P 2017 Nanotechnology 28 064002Google Scholar

    [53]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [54]

    Jain A, McGaughey A J 2015 Sci. Rep. 5 8501Google Scholar

    [55]

    Hossain M T, Rahman M A 2020 J. Mol. Model. 26 40Google Scholar

    [56]

    Min K, Aluru N R 2011 Appl. Phys. Lett. 98 013113Google Scholar

    [57]

    Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406Google Scholar

    [58]

    Jing Y, Ma Y D, Li Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [59]

    Pu C Y, Yu J H, Yu R M, Tang X, Zhou D W 2019 J. Mater. Chem. C 7 12231Google Scholar

    [60]

    Zha X H, Zhou J, Luo K, Lang J J, Huang Q, Zhou X, Francisco J S, He J, Du S 2017 J. Phys.: Condens. Matter. 29 165701Google Scholar

    [61]

    Xu Y, Liu G, Xing S A, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar

    [62]

    Fei R X, Li Y 2014 Nano Lett. 14 2884Google Scholar

    [63]

    Fang R H, Cui X Y, Stampfl C, Ringer S P, Zheng R K 2020 Phys. Chem. Chem. Phys. 22 2276Google Scholar

    [64]

    Zeng L, Xin Z, Chen S W, Du G, Kang J F, Liu X Y 2014 Chinese Phys. Lett. 31 027301Google Scholar

    [65]

    Nemec H, Kratochvilova I, Kuzel P, Sebera J, Kochalska A, Nozar J, Nespurek S 2011 Phys. Chem. Chem. Phys. 13 2850Google Scholar

    [66]

    Hong Y, Zhang J, Huang X, Zeng X C 2015 Nanoscale 7 18716Google Scholar

    [67]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [68]

    Peng B, Zhang H, Shao H Z, Xu Y C, Zhang X C, Zhu H Y 2016 Sci. Rep-Uk 6 20225Google Scholar

    [69]

    Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar

    [70]

    Cai Y Q, Lan J H, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 035438Google Scholar

    [71]

    Zulfiqar M, Zhao Y C, Li G, Li Z C, Ni J 2019 Sci. Rep-Uk 9 4571Google Scholar

    [72]

    Feng T, Ruan X 2018 Phys. Rev. B 97 045202Google Scholar

    [73]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [74]

    Chen X K, Chen K Q 2020 J. Phys.: Condens. Matter. 32 153002Google Scholar

  • [1] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electronic properties and modulation effects on edge-modified GeS2 nanoribbons. Acta Physica Sinica, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] Pan Jia-Ping, Zhang Ye-Wen, Li Jun, Lü Tian-Hua, Zheng Fei-Hu. Migration behavior of space charge packet researched by using electron beam irradiation and real-time space charge distribution measurement in piezo-pressure wave propagation (PWP) method. Acta Physica Sinica, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [3] Han Jia-Ning, Huang Jun-Ming, Cao Sheng-Guo, Li Zhan-Hai, Zhang Zhen-Hua. Magneto-electronic property and strain regulation for non-metal atom doped armchair arsenene nanotubes. Acta Physica Sinica, 2023, 72(19): 197101. doi: 10.7498/aps.72.20230644
    [4] Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Structural stability, electronic properties, and physical modulation effects of armchair-edged C3B nanoribbons. Acta Physica Sinica, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [5] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [6] Tang Jia-Xin, Fan Zhi-Qiang, Deng Xiao-Qing, Zhang Zhen-Hua. Non-metallic atom doped GaN nanotubes: Electronic structure, transport properties, and gate voltage regulating effects. Acta Physica Sinica, 2022, 71(11): 116101. doi: 10.7498/aps.71.20212342
    [7] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [8] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [9] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang. Effect of Na substitution on the electronic structure and ion diffusion in Li2MnSiO4. Acta Physica Sinica, 2016, 65(5): 057101. doi: 10.7498/aps.65.057101
    [10] He Hui-Fang, Chen Zhi-Quan. Positron annihilation studied defects and their influence on thermal conductivity of chemically synthesized Bi2Te3 nanocrystal. Acta Physica Sinica, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [11] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [12] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [13] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Wei, Yang Mu, Li Jing, Wang Ge. Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15. Acta Physica Sinica, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [14] Gao Tan-Hua, Wu Shun-Qing, Hu Chun-Hua, Zhu Zi-Zhong. The structural stability and electronic properties of monolayer BC2N. Acta Physica Sinica, 2011, 60(12): 127305. doi: 10.7498/aps.60.127305
    [15] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [16] Xu Lu-Jia, Hu Ming, Yang Hai-Bo, Yang Meng-Lin, Zhang Jie. Study on thermal conductivity of porous silicon thermal isolation layer based on micro-structure mathematical model. Acta Physica Sinica, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [17] Zhang Hui, Wang Bao-Yi, Zhang Ren-Gang, Zhang Zhe, Qian Hai-Jie, Su Run, Kui Re-Xi, Wei Long. Experimental studies on the electronic structure of pyrite FeS2 films prepared by thermally sulfurizing iron films. Acta Physica Sinica, 2006, 55(5): 2482-2487. doi: 10.7498/aps.55.2482
    [18] Wang Gui-Chun, Yuan Jian-Min. Structure and electronic properties of the low-dimensional copper systems. Acta Physica Sinica, 2003, 52(4): 970-977. doi: 10.7498/aps.52.970
    [19] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Chen Xian-Hui, Cao Lie-Zhao. Anomalous thermal conductivity enhancement in the mixed state of MgB2. Acta Physica Sinica, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [20] Yang Hong-Shun, Li Peng-Cheng, Cai Yi-Sheng, Yu Min, Li Zhi-Quan, Yang Dong-Sheng, Zhang Liang, Wang Yu-Hong, Li Ming-De, Cao Lie-Zhao, Long Yun-Zhe, Chen Zhao-Jia. . Acta Physica Sinica, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
  • supplement 244204-20211015补充材料.pdf supplement
Metrics
  • Abstract views:  4991
  • PDF Downloads:  185
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2021
  • Accepted Date:  05 September 2021
  • Available Online:  07 September 2021
  • Published Online:  20 December 2021

/

返回文章
返回