Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural phase transition induced enhancement of carrier mobility of monolayer RuSe2

Lu Kang-Jun Wang Yi-Fan Xia Qian Zhang Gui-Tao Chen Qian

Citation:

Structural phase transition induced enhancement of carrier mobility of monolayer RuSe2

Lu Kang-Jun, Wang Yi-Fan, Xia Qian, Zhang Gui-Tao, Chen Qian
PDF
HTML
Get Citation
  • Transition metal dichalcogenides (TMDs) is an important member of two-dimensional material family, which has various crystal structures and physical properties, thus providing a broad platform for scientific research and device applications. The diversity of TMD's properties arises not only from their relatively large family but also from the variety of their crystal structure phases. The most common structure of TMD is the trigonal prismatic phase (H phase) and the octahedral phase (T phase). Studies have shown that, in addition to these two high-symmetry phases, TMD has other distorted phases. Distorted phase often exhibits different physical properties from symmetric phases and can perform better in certain systems. Because the structural differences between different distorted phases are sometimes very small, it is experimentally challenging to observe multiple distorted phases coexisting. Therefore, it is meaningful to theoretically investigate the structural stability and physical properties of different distorted phases. In this study, we investigate the structure and phase transition of monolayer RuSe2 through first-principles calculation. While confirming that its ground state is a the dimerized phase ($T^\prime$ phase), we find the presence of another energetically competitive trimerized phase ($T^{\prime\prime\prime}$ phase). By comparing the energy values of four different structures and combining the results of phonon spectra and molecular dynamics simulations, we predict the stability of the $T^{\prime\prime\prime}$ phase at room temperature. Because the H phase and T phase of two-dimensional RuSe2 have already been observed experimentally, and considering the fact that $T^{\prime\prime\prime}$ phase has much lower energy than the H and T phases, it is highly likely that the $T^{\prime\prime\prime}$ phase exists in experiment. Combining the calculations of the phase transition barrier and the molecular dynamics simulations, we anticipate that applying a slight stress to the $T^\prime$ phase structure at room temperature can induce a lattice transition from $T^\prime$phase to $T^{\prime\prime\prime}$ phase, resulting in significant changes in the band structure and carrier mobility, with the bandgap changing from an indirect bandgap of 1.11 eV to a direct bandgap of 0.71 eV, and the carrier mobility in the armchair direction increasing from $ 0.82 \times $$ 10^3 \, {\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}$ to $3.22 \times 10^3 \, {\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}$, an approximately threefold enhancement. In this work, two possible coexisting distorted phases in monolayer RuSe2 are compared with each other and studied, and their electronic structures and carrier mobilities are analyzed, thereby facilitating experimental research on two-dimensional RuSe2 materials and their applications in future electronic devices.
      Corresponding author: Xia Qian, qianxia@seu.edu.cn ; Chen Qian, qc119@seu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1503103), the National Natural Science Foundation of China (Grant No. 22033002), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX23_0223).
    [1]

    Pinilla S, Coelho J, Li K, Liu J, Nicolosi V 2022 Nat. Rev. Mater. 7 717Google Scholar

    [2]

    Wan S J, Li X, Chen Y, Liu N N, Du Y, Dou S X, Jiang L, Cheng Q F 2021 Science 374 96Google Scholar

    [3]

    Jiang Y C, He A P, Zhao R, Chen Y, Liu G Z, Lu H, Zhang J L, Zhang Q, Wang Z, Zhao C, Long M S, Hu W D, Wang L, Qi Y P, Gao J, Wu Q Y, Ge X T, Ning J Q, Wee A T S, Qiu C W 2021 Phys. Rev. Lett. 127 217401Google Scholar

    [4]

    Zhu B R, Xiao K, Yang S Y, Watanabe K, Taniguchi T, Cui X D 2023 Phys. Rev. Lett. 131 036901Google Scholar

    [5]

    Liu X G, Pyatakov A P, Ren W 2020 Phys. Rev. Lett. 125 247601Google Scholar

    [6]

    Liu X E, Yang Y L, Hu T, Zhao G D, Chen C, Ren W 2019 Nanoscale 11 18575Google Scholar

    [7]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [8]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [9]

    Liu Y, Duan X D, Shin H J, Park S, Huang Y, Duan X F 2021 Nature 591 43Google Scholar

    [10]

    Wang S, ur Rehman Z, Liu Z F, Li T R, Li Y L, Wu Y B, Zhu H G, Cui S T, Liu Y, Zhang G B 2022 Chin. Phys. Lett. 39 077102Google Scholar

    [11]

    郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波 2022 物理学报 71 240Google Scholar

    Hao G Q, Zhang R, Zhang W J, Chen N, Ye X J, Li H B 2022 Acta Phys. Sin. 71 240Google Scholar

    [12]

    邓霖湄, 司君山, 吴绪才, 张卫兵 2022 物理学报 71 147101Google Scholar

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar

    [13]

    Zhao W, Pan J, Fang Y, Che X, Wang D, Bu K, Huang F 2018 Chem. Eur. J. 24 15942Google Scholar

    [14]

    Duerloo K A, Li Y, Reed E J 2014 Nat. Commun. 5 4214Google Scholar

    [15]

    Duvjir G, Choi B K, Ly T T, Lam N H, Chun S H, Jang K, Soon A, Chang Y J, Kim J 2019 Nanoscale 11 20096Google Scholar

    [16]

    Sun Y F, Wang Y X, Sun D, Carvalho B R, Read C G, Lee C H, Lin Z, Fujisawa K, Robinson J A, Crespi V H, Terrones M, Schaak R E 2016 Angew. Chem. Int. Ed. 55 2830Google Scholar

    [17]

    Liu Z Q, Li N, Su C, Zhao H Y, Xu L L, Yin Z Y, Li J, Du Y P 2018 Nano Energy 50 176Google Scholar

    [18]

    Kar I, Dolui K, Harnagea L, Kushnirenko Y, Shipunov G, Plumb N C, Shi M, Büchner B, Thirupathaiah S 2021 J. Phys. Chem. C 125 1150Google Scholar

    [19]

    Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar

    [20]

    Niehues I, Deilmann T, Kutrowska-Girzycka J, Taghizadeh A, Bryja L, Wurstbauer U, Bratschitsch R, Jadczak J 2022 Phys. Rev. B 105 205432Google Scholar

    [21]

    Fang Y, Hu X, Zhao W, Pan J, Wang D, Bu K, Mao Y, Chu S, Liu P, Zhai T, Huang F 2019 J. Am. Chem. Soc. 141 790Google Scholar

    [22]

    Lipatov A, Chaudhary P, Guan Z, Lu H, Li G, Crégut O, Dorkenoo K D, Proksch R, Cherifi-Hertel S, Shao D F, Tsymbal E Y, Íñiguez J, Sinitskii A, Gruverman A 2022 npj 2D Mater. Appl. 6 18Google Scholar

    [23]

    Liu L, Chen S S, Lin Z Z, Zhang X 2020 J. Phys. Chem. Lett. 11 7893Google Scholar

    [24]

    Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A 2015 J. Phys. Chem. C 119 13124Google Scholar

    [25]

    Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L, Song B 2021 Adv. Mater. 33 e1907818Google Scholar

    [26]

    Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11 482Google Scholar

    [27]

    Lai Z C, He Q Y, Ha Tran T, Repaka D V M, Zhou D D, Sun Y, Xi S B, Li Y X, Chaturvedi A, Tan C L, Chen B, Nam G H, Li B, Ling C Y, Zhai W, Shi Z Y, Hu D Y, Sharma V, Hu Z N, Chen Y, Zhang Z C, Yu Y F, Wang X R, Ramanujan R V, Ma Y M, Hippalgaonkar K, Zhang H 2021 Nat. Mater. 20 1113Google Scholar

    [28]

    Song M S, Shi Q, Kan D X, Wei S R, Xu F M, Huo W T, Chen K Y 2023 Appl. Surf. Sci. 612 155761Google Scholar

    [29]

    Tanimura H, Okamoto N L, Homma T, Sato Y, Ishii A, Takamura H, Ichitsubo T 2022 Phys. Rev. B 105 245402Google Scholar

    [30]

    Kiem D, Jeong M Y, Yoon H, Han M J 2022 Nanoscale 14 10009Google Scholar

    [31]

    Chen K, Deng J, Kan D, Yan Y, Shi Q, Huo W, Song M, Yang S, Liu J Z 2022 Phys. Rev. B 105 024414Google Scholar

    [32]

    Zhang M G, Chen L F, Feng L, Tuo H H, Zhang Y, Wei Q, Li P F 2023 Chin. Phys. B 32 086101Google Scholar

    [33]

    Zhao Y, Cong H, Li P, Wu D, Chen S, Luo W 2021 Angew. Chem. Int. Ed. 60 7013Google Scholar

    [34]

    Ersan F, Cahangirov S, Gökoglu G, Rubio A, Aktürk E 2016 Phys. Rev. B 94 155415Google Scholar

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [36]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [37]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [38]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [39]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [40]

    Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar

    [41]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [42]

    Bucher D, Pierce L C T, McCammon J A, Markwick P R L 2011 J. Chem. Theory Comput. 7 890Google Scholar

    [43]

    Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar

    [44]

    Abdullahi Y Z, Ahmad S 2021 Phys. Chem. Chem. Phys. 23 16316Google Scholar

    [45]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 2372Google Scholar

    [46]

    Zhang G T, Lu K J, Wang Y F, Wang H W, Chen Q 2022 Phys. Rev. B 105 235303Google Scholar

    [47]

    Wang Y T, Tang X H, Zhou Q H, Chen X Y, Chen Q, Xu Y H 2020 Phys. Rev. B 102 165428Google Scholar

    [48]

    Zhou Q H, Chen Q, Tong Y L, Wang J L 2016 Angew. Chem. Int. Ed. 55 11437Google Scholar

  • 图 1  (a) 单层RuSe2 4种结构的相对能量, 以图中矩形超胞的长度作为横坐标进行排列, 绿球代表Ru原子, 红球代表Se原子; (b) RuSe2的$ T^\prime $相晶体结构; (c) RuSe2的$ T^{\prime\prime\prime} $相晶体结构

    Figure 1.  (a) The relative energies of four structures of monolayer RuSe2, arranged along the lengths of rectangular supercells, green spheres represent Ru atoms, while red spheres represent Se atoms; (b) crystal structure of RuSe2 in the $ T^\prime $ phase; (c) crystal structure of RuSe2 in the $ T^{\prime\prime\prime} $ phase.

    图 2  (a) AIMD模拟300 K时$ T^{\prime\prime\prime} $相单层RuSe2总能量随时间的变化, 插图为始末状态的晶体结构图; (b) $ T^{\prime\prime\prime} $相单层RuSe2的声子谱

    Figure 2.  (a) Variation of the total energy of monolayer RuSe2 in the $ T^{\prime\prime\prime} $ phase during AIMD simulation at 300 K. The crystal structures of the initial and final states shown in the inset; (b) phonon spectrum of monolayer RuSe2 in the $ T^{\prime\prime\prime} $ phase.

    图 3  (a) 单层RuSe2在$ T^\prime $相的能带结构; (b) 单层RuSe2 在$ T^{\prime\prime\prime} $相的能带结构; (c) $ T^\prime $相中的Ru-Se八面体结构; (d) $ T^{\prime\prime\prime} $相中的Ru-Se八面体结构; (e) Ru-Se 八面体的Ru-d轨道在不同晶相结构中的分裂情况示意图

    Figure 3.  (a) Band structure of monolayer RuSe2 in the $ T^\prime $ phase; (b) band structure of monolayer RuSe2 in the $ T^{\prime\prime\prime} $ phase; (c) octahedral structure of Ru-Se in the $ T^\prime $ phase; (d) octahedral structure of Ru-Se in the $ T^{\prime\prime\prime} $ phase; (e) schematic illustration of the splitting of Ru-d orbitals in the Ru-Se octahedron in different crystal phases.

    图 4  (a) 单层RuSe2在$ T^\prime $与$ T^{\prime\prime\prime} $相下能量随zigzag方向晶格长度变化的关系曲线, 插图为部分位置处发生相变的NEB势垒图; (b) 300 K下, $ T^\prime $ 相在zigzag方向施加6.5%压缩应变时的分子动力学模拟, 其中的插图分别是0和15 ps的结构图

    Figure 4.  (a) The energy of monolayer RuSe2 in the $ T^\prime $ and $ T^{\prime\prime\prime} $ phases variation with the lattice along the zigzag direction. The insets are the NEB barriers showing phase transitions at certain positions; (b) AIMD of the $ T^\prime $ phase under 6.5% compressive strain along the zigzag direction at 300 K, with insets showing crystal structures at 0 and 15 ps.

    表 1  计算得到的单层RuSe2在armchair和zigzag方向上的载流子有效质量$ m^*\left({m}_{0}\right) $, $ {{m}}_0 $为单个电子的质量; 弹性模量$C\;\left( {\rm N}{\cdot}{\rm m}^{-1}\right) $; 形变势$ E_1 \;(\text{eV}) $和迁移率$ \mathit{µ}\;\left({\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}\right) $.

    Table 1.  Calculated effective mass of carriers $ m^*\left({m}_{0}\right) $, here the $ {m}_{0} $ represents the mass of a single electron; elastic modulus $ C\;\left({\rm N}{\cdot}{\rm m}^{-1}\right) $; deformation potential $ E_1 \; \left(\text{eV}\right)$; and mobility $\mathit{µ}\; \left({\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}\right)$ of monolayer RuSe2 in the armchair and zigzag directions.

    Phase/Carrier$ m^*_{{\mathrm{arm}}} $$ m^*_{{\mathrm{zig}}} $$ C_{11} $$ C_{22} $$ E_{1 {\mathrm{arm}}} $$ E_{1 {\mathrm{zig}}} $$ \mu_{\rm arm} $$ \mu_{\rm zig} $
    $ {m}_{0} $$ /({\rm N}{\cdot}{\rm m}^{-1}) $/eV$ /\left({\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}\right) $
    $ T^\prime \text{/e}$37.599.6495.7392.010.74–2.872.443.53
    $ T^\prime \text{/h}$3.211.221.46–0.71224.42823.25
    $ T^{\prime\prime\prime}\text{/e} $3.481.1697.8099.31–1.46–2.9870.53150.57
    $ T^{\prime\prime\prime} \text{/h}$1.100.601.780.501182.653219.20
    DownLoad: CSV
  • [1]

    Pinilla S, Coelho J, Li K, Liu J, Nicolosi V 2022 Nat. Rev. Mater. 7 717Google Scholar

    [2]

    Wan S J, Li X, Chen Y, Liu N N, Du Y, Dou S X, Jiang L, Cheng Q F 2021 Science 374 96Google Scholar

    [3]

    Jiang Y C, He A P, Zhao R, Chen Y, Liu G Z, Lu H, Zhang J L, Zhang Q, Wang Z, Zhao C, Long M S, Hu W D, Wang L, Qi Y P, Gao J, Wu Q Y, Ge X T, Ning J Q, Wee A T S, Qiu C W 2021 Phys. Rev. Lett. 127 217401Google Scholar

    [4]

    Zhu B R, Xiao K, Yang S Y, Watanabe K, Taniguchi T, Cui X D 2023 Phys. Rev. Lett. 131 036901Google Scholar

    [5]

    Liu X G, Pyatakov A P, Ren W 2020 Phys. Rev. Lett. 125 247601Google Scholar

    [6]

    Liu X E, Yang Y L, Hu T, Zhao G D, Chen C, Ren W 2019 Nanoscale 11 18575Google Scholar

    [7]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [8]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [9]

    Liu Y, Duan X D, Shin H J, Park S, Huang Y, Duan X F 2021 Nature 591 43Google Scholar

    [10]

    Wang S, ur Rehman Z, Liu Z F, Li T R, Li Y L, Wu Y B, Zhu H G, Cui S T, Liu Y, Zhang G B 2022 Chin. Phys. Lett. 39 077102Google Scholar

    [11]

    郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波 2022 物理学报 71 240Google Scholar

    Hao G Q, Zhang R, Zhang W J, Chen N, Ye X J, Li H B 2022 Acta Phys. Sin. 71 240Google Scholar

    [12]

    邓霖湄, 司君山, 吴绪才, 张卫兵 2022 物理学报 71 147101Google Scholar

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar

    [13]

    Zhao W, Pan J, Fang Y, Che X, Wang D, Bu K, Huang F 2018 Chem. Eur. J. 24 15942Google Scholar

    [14]

    Duerloo K A, Li Y, Reed E J 2014 Nat. Commun. 5 4214Google Scholar

    [15]

    Duvjir G, Choi B K, Ly T T, Lam N H, Chun S H, Jang K, Soon A, Chang Y J, Kim J 2019 Nanoscale 11 20096Google Scholar

    [16]

    Sun Y F, Wang Y X, Sun D, Carvalho B R, Read C G, Lee C H, Lin Z, Fujisawa K, Robinson J A, Crespi V H, Terrones M, Schaak R E 2016 Angew. Chem. Int. Ed. 55 2830Google Scholar

    [17]

    Liu Z Q, Li N, Su C, Zhao H Y, Xu L L, Yin Z Y, Li J, Du Y P 2018 Nano Energy 50 176Google Scholar

    [18]

    Kar I, Dolui K, Harnagea L, Kushnirenko Y, Shipunov G, Plumb N C, Shi M, Büchner B, Thirupathaiah S 2021 J. Phys. Chem. C 125 1150Google Scholar

    [19]

    Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar

    [20]

    Niehues I, Deilmann T, Kutrowska-Girzycka J, Taghizadeh A, Bryja L, Wurstbauer U, Bratschitsch R, Jadczak J 2022 Phys. Rev. B 105 205432Google Scholar

    [21]

    Fang Y, Hu X, Zhao W, Pan J, Wang D, Bu K, Mao Y, Chu S, Liu P, Zhai T, Huang F 2019 J. Am. Chem. Soc. 141 790Google Scholar

    [22]

    Lipatov A, Chaudhary P, Guan Z, Lu H, Li G, Crégut O, Dorkenoo K D, Proksch R, Cherifi-Hertel S, Shao D F, Tsymbal E Y, Íñiguez J, Sinitskii A, Gruverman A 2022 npj 2D Mater. Appl. 6 18Google Scholar

    [23]

    Liu L, Chen S S, Lin Z Z, Zhang X 2020 J. Phys. Chem. Lett. 11 7893Google Scholar

    [24]

    Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A 2015 J. Phys. Chem. C 119 13124Google Scholar

    [25]

    Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L, Song B 2021 Adv. Mater. 33 e1907818Google Scholar

    [26]

    Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11 482Google Scholar

    [27]

    Lai Z C, He Q Y, Ha Tran T, Repaka D V M, Zhou D D, Sun Y, Xi S B, Li Y X, Chaturvedi A, Tan C L, Chen B, Nam G H, Li B, Ling C Y, Zhai W, Shi Z Y, Hu D Y, Sharma V, Hu Z N, Chen Y, Zhang Z C, Yu Y F, Wang X R, Ramanujan R V, Ma Y M, Hippalgaonkar K, Zhang H 2021 Nat. Mater. 20 1113Google Scholar

    [28]

    Song M S, Shi Q, Kan D X, Wei S R, Xu F M, Huo W T, Chen K Y 2023 Appl. Surf. Sci. 612 155761Google Scholar

    [29]

    Tanimura H, Okamoto N L, Homma T, Sato Y, Ishii A, Takamura H, Ichitsubo T 2022 Phys. Rev. B 105 245402Google Scholar

    [30]

    Kiem D, Jeong M Y, Yoon H, Han M J 2022 Nanoscale 14 10009Google Scholar

    [31]

    Chen K, Deng J, Kan D, Yan Y, Shi Q, Huo W, Song M, Yang S, Liu J Z 2022 Phys. Rev. B 105 024414Google Scholar

    [32]

    Zhang M G, Chen L F, Feng L, Tuo H H, Zhang Y, Wei Q, Li P F 2023 Chin. Phys. B 32 086101Google Scholar

    [33]

    Zhao Y, Cong H, Li P, Wu D, Chen S, Luo W 2021 Angew. Chem. Int. Ed. 60 7013Google Scholar

    [34]

    Ersan F, Cahangirov S, Gökoglu G, Rubio A, Aktürk E 2016 Phys. Rev. B 94 155415Google Scholar

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [36]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [37]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [38]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [39]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [40]

    Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar

    [41]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [42]

    Bucher D, Pierce L C T, McCammon J A, Markwick P R L 2011 J. Chem. Theory Comput. 7 890Google Scholar

    [43]

    Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar

    [44]

    Abdullahi Y Z, Ahmad S 2021 Phys. Chem. Chem. Phys. 23 16316Google Scholar

    [45]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 2372Google Scholar

    [46]

    Zhang G T, Lu K J, Wang Y F, Wang H W, Chen Q 2022 Phys. Rev. B 105 235303Google Scholar

    [47]

    Wang Y T, Tang X H, Zhou Q H, Chen X Y, Chen Q, Xu Y H 2020 Phys. Rev. B 102 165428Google Scholar

    [48]

    Zhou Q H, Chen Q, Tong Y L, Wang J L 2016 Angew. Chem. Int. Ed. 55 11437Google Scholar

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Zhang Lei, Chen Qi-Hang, Cao Shuo, Qian Ping. First-principles calculations of carrier mobility in monolayer IrSCl and IrSI. Acta Physica Sinica, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [3] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [4] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [5] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [6] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [7] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [8] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [9] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [10] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [11] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [12] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [13] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [14] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [15] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [16] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [17] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [18] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [19] Gong Chang-Wei, Wang Yi-Nong, Yang Da-Zhi. Ab initio study of the martensitic transformation of NiTi shape memory alloys. Acta Physica Sinica, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [20] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
  • supplement 14-20240557Suppl.pdf supplement
Metrics
  • Abstract views:  2524
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2024
  • Accepted Date:  25 May 2024
  • Available Online:  06 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回