Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations

Wang Yan Chen Nan-Di Yang Chen Zeng Zhao-Yi Hu Cui-E Chen Xiang-Rong

Citation:

Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations

Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong
PDF
HTML
Get Citation
  • Developing efficient thermoelectric materials has never lost the attraction due to their promising performances in the energy conversion. The different mechanisms of phonon scattering lead to the various outstanding performances of layered materials in thermoelectric properties. So we investigate the structure, electronic and thermoelectric transport properties of Penta-XTe2 (X = Pd, Pt) layers based on the density functional theory and Boltzmann transport theory. Those monolayers have a beautiful penta-graphene-like buckled structure with a space group of P2_1/c (No.14). The values of optimized lattice constant a (b) are 6.437 Å (6.145 Å) and 6.423 Å (6.12 Å) for PdTe2 and PtTe2 monolayers, respectively. In order to assess the stability, we calculate the phonon dispersion along the high symmetry lines in the Brillouin zone. The second-order harmonic and third-order anharmonic interatomic force constants (IFCs) are calculated by using 5 × 5 × 1 supercell and 4 × 4 × 1 supercell based on the relaxed unit cell. All these results indicate that those monolayers are thermodynamically stable. Energy band structure is essential in obtaining reliable transport properties. So we calculate the band structures of penta-XTe2. Both PdTe2 and PtTe2 are semiconductors with indirect band gaps of 1.24 eV and 1.38 eV, respectively, which are in good agreement with previous experimental and theoretical results.The lattice thermal conductivity of XTe2 decreases with temperature increasing, but the electronic thermal conductivity varies with temperature in the opposite way exactly. It is found that the thermal conductivity comes from the contribution of the lattice thermal conductivity at low temperature. The room-temperature total thermal conductivities in the x (y) direction of the PdTe2 and PtTe2 monolayers are 3.95 W/(m·K) (2.7 W/(m·K)) and 3.27 W/(m·K)(1.04 W/(m·K)), respectively. The contribution of low thermal conductivity indicates that the thermoelectric properties of PtTe2 monolayer may be better than those of PdTe2 monolayer.The relaxation time (τ) and carrier mobility (μ) are obtained based on the Bardeen-Shockley deformation potential (DP) theory in two-dimensional materials. Remarkably, they have the higher hole mobility than the electron mobility. The anisotropic electronic transport properties of XTe2 are obtained by solving Boltzmann transport equation. The electrical conductivity over relaxation time (σ/τ) and Seebeck coefficient (S) contribute to the figure of merit ZT. High Seebeck coefficient (S) with the value larger than 400 μV/K can be found in both p-type and n-type cases, suggesting that the TE performance of XTe2 may be considerable. The room-temperature largest ZT values of penta-XTe2 (X = Pd, Pt) at p-type are 0.83 and 2.75 respectively. The monolayer PtTe2 is a potential thermoelectric material.
      Corresponding author: Hu Cui-E, cuiehu@126.com
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2019jcyj-msxmX0501, cstc2020jcyj-msxmX0616) and the Science and Technology Research Project of Chongqing Education Committee, China (Grant Nos. KJ1703044, KJ1703062, KJ1600520)
    [1]

    Jaziri N, Boughamoura A, Müller J, Mezghani B, Tounsi F, Ismail M 2019 Energy Rep. 6 7Google Scholar

    [2]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [3]

    Zhou W W, Zhu J X, Li D, Hng H H, Boey F Y C, Ma J Zhang H, Yan Q Y 2009 Adv. Mater. 21 3196Google Scholar

    [4]

    Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 7496

    [5]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451Google Scholar

    [6]

    Balandin A, Wang K L 1998 J. Appl. Phys. 84 6149Google Scholar

    [7]

    Zhou Y, Zhao L D 2017 Adv. Mater. 29 1702676Google Scholar

    [8]

    Lan Y S, Chen X R, Hu C E, Cheng Y, Chen Q F 2019 J. Mater. Chem. A 7 11134Google Scholar

    [9]

    Ghosh K, Singisetti U 2015 J. Appl. Phys. 118 135711Google Scholar

    [10]

    Jin Z L, Liao Q W, Fang H S, Liu Z C, Liu W, Ding Z D, Luo T F, Yang N 2015 Sci Rep 5 18342Google Scholar

    [11]

    Kumar S, Schwingenschlogl U 2015 Chem. Mat. 27 1278Google Scholar

    [12]

    Roldán R, Silva-Guillén J A, López-Sancho M P, Guinea F, Cappelluti E, Ordejón P 2014 Ann. Phys. 526 347Google Scholar

    [13]

    Chow W L, Yu P, Liu F C, Hong J H, Wang X L, Zeng Q S, Hsu C H, Zhu C, Zhou J D, Wang X W, Xia J, Yan J X, Chen Yu, Wu D, Yu T, Shen Z X, Lin H, Jin C H, Tay B K, Liu Z 2017 Adv. Mater. 29 1602969Google Scholar

    [14]

    张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2005 物理学报 8 313Google Scholar

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2005 Acta Phys. Sin. 8 313Google Scholar

    [15]

    Ahmad S 2017 Mater. Chem. Phys. 198 162Google Scholar

    [16]

    Qin D, Yan P, Ding G Q, Ge X J, Song H Y, Gao G 2018 Sci Rep 8 1

    [17]

    Lan Y S, Lu Q, Hu C E, Chen X R, Chen Q F 2018 Appl. Phys. A-Mater. Sci. Process. 125 33

    [18]

    Su T Y, Medina H, Chen Y Z, Wang S W, Lee S S, Shih Y C, Chen C W, Kuo H C, Chuang F C, Chueh Y L 2018 Small 14 1800032Google Scholar

    [19]

    Wang M J, Ko T J, Shawkat M S, Han S S, Okogbue E, Chung H S, Bae T S, Sattar S, Gil J, Noh C, Oh K H, Jung Y J, Larsson J A, Jung Y 2020 ACS Appl. Mater. Interfaces 12 10839Google Scholar

    [20]

    Sun G, Kürti J, Rajczy P, Kertesz M, Hafner J, Kresse G 2003 J. Mol. Struct. 624 37Google Scholar

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Soulard C, Rocquefelte X, Petit P E, Evain M, Jobic S, Itié J P, Munson P, Koo H J, Whangbo M H 2004 Inorg. Chem. 43 1943Google Scholar

    [26]

    Oyedele A D, Yang S, Liang L, Puretzky A, Wang K, Zhang J, Yu P, Pudasaini P R, Ghosh A W, Liu Z, Rouleau C M, Sumpter B G, Chisholm M F, Zhou W, Rack P D, Geohegan D B, Xiao K 2017 J. Am. Chem. Soc. 139 1490Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Georg K H M, David J S 2006 Comput. Phys. Commun. 175 67Google Scholar

    [29]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [30]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [31]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [32]

    Xi J, Long M, Tang L, Wang D, Shuai Z 2012 Nanoscale 4 4348Google Scholar

    [33]

    Huang S, Liu H J, Fan D D, Jiang P H, Liang J H, Cao G H, Shi J 2018 J. Phys. Chem. C 122 4217Google Scholar

    [34]

    Guo H H, Yang T, Tao P, Zhang Z D. 2014 Chin. Phys. B 23 017201Google Scholar

    [35]

    Marfoua B, Hong J 2019 ACS Appl. Mater. Interfaces 11 38819Google Scholar

    [36]

    Wu P. 2019 IOP Conf. Ser.: Mater. Sci. Eng. 631 042010Google Scholar

    [37]

    Carrete J, Li W, Lindsay L, Broido D A, Gallego L J, Mingo N 2016 Mater. Res. Lett. 4 204Google Scholar

    [38]

    Peng B, Zhang D, Zhang H, Shao H, Ni G, Zhu Y, Zhu H 2017 Nanoscale 9 7397Google Scholar

  • 图 1  XTe2 (X = Pd, Pt)单层结构的顶视图和侧视图

    Figure 1.  Top and side views of XTe2 (X = Pd, Pt) monolayers

    图 2  PdTe2 (a)和PtTe2 (b)的声子色散图

    Figure 2.  Calculated phonon dispersion curves of PdTe2 (a)and PtTe2 (b).

    图 3  PdTe2 (a)和PtTe2 (b)单层沿布里渊区高对称方向的能带结构

    Figure 3.  Calculated energy-band structure of layered PdTe2 (a) and PtTe2 (b) along high-symmetry directions of the Brillouin zone.

    图 4  单层PdTe2 (a)和PtTe2 (b)群速度的三支声学分支(LA, TA 和ZA)随频率的变化

    Figure 4.  Variation of group velocity of three acoustic branches (ZA, TA, LA) with the frequency of PdTe2 (a) and PtTe2 (b) monolayers.

    图 5  室温下PdTe2 (a)和PtTe2 (b)单层的声子色散率随频率的变化关系, LA, TA 和ZA为三支声学分支

    Figure 5.  Phonon scattering rates of PdTe2 (a) and PtTe2 (b) monolayers at room temperature, where ZA, TA and LA are acoustic branches.

    图 6  (a) PdTe2和PtTe2层状材料的晶格热导率沿x, y方向随温度的变化率; PdTe2 (b)和PtTe2 (c) 晶格热导率, 电子热导率及总热导率随温度变化的关系

    Figure 6.  (a) Calculated lattice thermal conductivity of monolayer PdTe2 and PtTe2 along the x (dark dashed line) and the y (red dashed line) directions and from 200 K to 800 K with the interval of 100 K; thermal conductivity of PdTe2 (b) and PtTe2 (c) at different temperatures, where ke is electron thermal conductivity, kl is lattice thermal conductivity, and ke + kl is total thermal conductivity.

    图 7  p型掺杂时, PdTe2 (a)和PtTe2 (b)两种材料在不同温度下沿x, y两个方向σ/τ 随载流子浓度的变化. n型掺杂时, PdTe2 (c)和PtTe2 (d)两种材料在不同温度下沿x, y两个方向σ/τ 随载流子浓度的变化

    Figure 7.  Calculated electrical conductivity of p-type (a), (b) and n-type (c), (b) monolayer PdTe2 and PtTe2 along the x and the y directions from 300 K to 900 K with the interval of 300 K.

    图 8  p型掺杂时, PdTe2 (a)和PtTe2 (b)两种材料在不同温度下沿x, y两个方向的塞贝克系数S随载流子浓度的变化. n型掺杂时, PdTe2 (c)和PtTe2 (d)两种材料在不同温度下沿x, y两个方向的塞贝克系数S随载流子浓度的变化

    Figure 8.  Calculated Seebeck coefficient S of p-type (a), (b) and n-type (c), (d) monolayer PdTe2 and PtTe2 along the x and the y directions from 300 to 900 K with the interval of 300 K.

    图 9  p型掺杂时PdTe2 (a)和PtTe2 (b)两种材料在不同温度下沿x, y两个方向ZT值随载流子浓度的变化. n型掺杂时PdTe2 (c)和PtTe2 (d)两种材料在不同温度下沿x, y两个方向ZT值随载流子浓度的变化

    Figure 9.  Calculated ZT values of p-type (a), (b) and n-type (c), (d) monolayer PdTe2 and PtTe2 along the x and the y directions from 300 K to 900 K with the interval of 300 K.

    表 1  XTe2 (X = Pd, Pt) 单层的晶格常数(a, b)

    Table 1.  The optimized lattice parameters (a, b) of XTe2 (X = Pd, Pt) monolayers.

    MaterialsResultsab
    PdTe2Present6.4376.145
    Calc.6.44[8], 6.439[35]6.14[8], 6.147[35]
    PtTe2Present6.4236.12
    Calc.6.44[36]
    DownLoad: CSV

    表 2  温度为300 K时, PdTe2和PtTe2的有效弹性模量C2D、形变势常量El、有效质量m*、载流子迁移率μ及弛豫时间τ

    Table 2.  Calculated elastic modulus C2 D, DP constant El, effective mass (m*), carrier mobility (μ), and relaxation time (τ) at 300 K of PdTe2 and PtTe2 monolayers.

    PdTe2xyPtTe2xy
    pnpnpnpn
    C2D/(eV·Å–2)4.863.904.755.84
    El/eV3.65.53.24.62.653.833.96.4
    m*/me0.880.580.880.580.440.330.460.29
    μ/(cm2·V–1·s–1)16215716818311501071630546
    τ/(10–14 s)8.25.38.56.128.920.316.68.9
    DownLoad: CSV
  • [1]

    Jaziri N, Boughamoura A, Müller J, Mezghani B, Tounsi F, Ismail M 2019 Energy Rep. 6 7Google Scholar

    [2]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [3]

    Zhou W W, Zhu J X, Li D, Hng H H, Boey F Y C, Ma J Zhang H, Yan Q Y 2009 Adv. Mater. 21 3196Google Scholar

    [4]

    Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 7496

    [5]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451Google Scholar

    [6]

    Balandin A, Wang K L 1998 J. Appl. Phys. 84 6149Google Scholar

    [7]

    Zhou Y, Zhao L D 2017 Adv. Mater. 29 1702676Google Scholar

    [8]

    Lan Y S, Chen X R, Hu C E, Cheng Y, Chen Q F 2019 J. Mater. Chem. A 7 11134Google Scholar

    [9]

    Ghosh K, Singisetti U 2015 J. Appl. Phys. 118 135711Google Scholar

    [10]

    Jin Z L, Liao Q W, Fang H S, Liu Z C, Liu W, Ding Z D, Luo T F, Yang N 2015 Sci Rep 5 18342Google Scholar

    [11]

    Kumar S, Schwingenschlogl U 2015 Chem. Mat. 27 1278Google Scholar

    [12]

    Roldán R, Silva-Guillén J A, López-Sancho M P, Guinea F, Cappelluti E, Ordejón P 2014 Ann. Phys. 526 347Google Scholar

    [13]

    Chow W L, Yu P, Liu F C, Hong J H, Wang X L, Zeng Q S, Hsu C H, Zhu C, Zhou J D, Wang X W, Xia J, Yan J X, Chen Yu, Wu D, Yu T, Shen Z X, Lin H, Jin C H, Tay B K, Liu Z 2017 Adv. Mater. 29 1602969Google Scholar

    [14]

    张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2005 物理学报 8 313Google Scholar

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2005 Acta Phys. Sin. 8 313Google Scholar

    [15]

    Ahmad S 2017 Mater. Chem. Phys. 198 162Google Scholar

    [16]

    Qin D, Yan P, Ding G Q, Ge X J, Song H Y, Gao G 2018 Sci Rep 8 1

    [17]

    Lan Y S, Lu Q, Hu C E, Chen X R, Chen Q F 2018 Appl. Phys. A-Mater. Sci. Process. 125 33

    [18]

    Su T Y, Medina H, Chen Y Z, Wang S W, Lee S S, Shih Y C, Chen C W, Kuo H C, Chuang F C, Chueh Y L 2018 Small 14 1800032Google Scholar

    [19]

    Wang M J, Ko T J, Shawkat M S, Han S S, Okogbue E, Chung H S, Bae T S, Sattar S, Gil J, Noh C, Oh K H, Jung Y J, Larsson J A, Jung Y 2020 ACS Appl. Mater. Interfaces 12 10839Google Scholar

    [20]

    Sun G, Kürti J, Rajczy P, Kertesz M, Hafner J, Kresse G 2003 J. Mol. Struct. 624 37Google Scholar

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Soulard C, Rocquefelte X, Petit P E, Evain M, Jobic S, Itié J P, Munson P, Koo H J, Whangbo M H 2004 Inorg. Chem. 43 1943Google Scholar

    [26]

    Oyedele A D, Yang S, Liang L, Puretzky A, Wang K, Zhang J, Yu P, Pudasaini P R, Ghosh A W, Liu Z, Rouleau C M, Sumpter B G, Chisholm M F, Zhou W, Rack P D, Geohegan D B, Xiao K 2017 J. Am. Chem. Soc. 139 1490Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Georg K H M, David J S 2006 Comput. Phys. Commun. 175 67Google Scholar

    [29]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [30]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [31]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [32]

    Xi J, Long M, Tang L, Wang D, Shuai Z 2012 Nanoscale 4 4348Google Scholar

    [33]

    Huang S, Liu H J, Fan D D, Jiang P H, Liang J H, Cao G H, Shi J 2018 J. Phys. Chem. C 122 4217Google Scholar

    [34]

    Guo H H, Yang T, Tao P, Zhang Z D. 2014 Chin. Phys. B 23 017201Google Scholar

    [35]

    Marfoua B, Hong J 2019 ACS Appl. Mater. Interfaces 11 38819Google Scholar

    [36]

    Wu P. 2019 IOP Conf. Ser.: Mater. Sci. Eng. 631 042010Google Scholar

    [37]

    Carrete J, Li W, Lindsay L, Broido D A, Gallego L J, Mingo N 2016 Mater. Res. Lett. 4 204Google Scholar

    [38]

    Peng B, Zhang D, Zhang H, Shao H, Ni G, Zhu Y, Zhu H 2017 Nanoscale 9 7397Google Scholar

  • [1] Zhang Cai-Xia, Ma Xiang-Chao, Zhang Jian-Qi. Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films. Acta Physica Sinica, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] Yang Shun-Jie, Li Chun-Mei, Zhou Jin-Ping. First-principles study of magnetic disordering and alloying effects on phase stability and elastic constants of Co2CrZ (Z = Ga, Si, Ge) alloys. Acta Physica Sinica, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [3] Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing. First-principles calculations of local structure and electronic properties of Er3+-doped TiO2. Acta Physica Sinica, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [4] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [5] Li Tian-Jing, Cao Xiu-Xia, Tang Shi-Hui, He Lin, Meng Chuan-Min. Crystal-orientation effects of the optical extinction in shocked Al2O3: a first-principles investigation. Acta Physica Sinica, 2020, 69(4): 046201. doi: 10.7498/aps.69.20190955
    [6] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [7] Luo Ming-Hai, Li Ming-Kai, Zhu Jia-Kun, Huang Zhong-Bing, Yang Hui, He Yun-Bin. First-principles study on thermodynamic properties of CdxZn1-xO alloys. Acta Physica Sinica, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [8] Gao Miao, Kong Xin, Lu Zhong-Yi, Xiang Tao. First-principles study of electron-phonon coupling and superconductivity in compound Li2C2. Acta Physica Sinica, 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [9] Peng Qiong, He Chao-Yu, Li Jin, Zhong Jian-Xin. First-principles study of electronic properties of MoSi2 thin films. Acta Physica Sinica, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [10] Chen Yan-Qiu. Calculation of transport coefficients of a xenon plasma. Acta Physica Sinica, 2014, 63(20): 205201. doi: 10.7498/aps.63.205201
    [11] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [12] Wang Hai-Xing, Sun Su-Rong, Chen Shi-Qiang. Calculation of two-temperature transport coefficients of helium plasma. Acta Physica Sinica, 2012, 61(19): 195203. doi: 10.7498/aps.61.195203
    [13] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [14] Ding Hang-Chen, Shi Si-Qi, Jiang Ping, Tang Wei-Hua. First-principles investigation on the phase transitions of BiFeO3. Acta Physica Sinica, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [15] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [16] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [17] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [18] Huang Dan, Shao Yuan-Zhi, Chen Di-Hu, Guo Jin, Li Guang-Xu. First-principles calculation on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta Physica Sinica, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [19] Ouyang Fang-Ping, Xu Hui, Wei Chen. First-principles study of electronic structure and transport properties of zigzag graphene nanoribbons. Acta Physica Sinica, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [20] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
Metrics
  • Abstract views:  12300
  • PDF Downloads:  600
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2020
  • Accepted Date:  13 January 2021
  • Available Online:  25 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回