-
Filterless color discriminative imaging system is greatly demanded, with the pixel size shrinking to subwavelength. Nanowires have broad applications in photodetectors and have excellent ability to discriminate color by the cavity mode effect due to its well-controlled geometry. Here we use the finite element method to simulate a coned nanowire device which can split the light as well as serve as a photodetector array. The numerical simulation results show that the important parameters such as the wavelength range and resolution realized by the device can be modulated by the top radius, bottom radius, length, and material as well. And we also analyze how the surroundings and the incident angle affect the performance of the device. These results have important reference significance for the practical application of tapered nanowires as photodetectors.
-
Keywords:
- coned nanowire /
- photodetector /
- cavity mode
[1] Lim S J, Leem D S, Park K B, et al. 2015 Sci. Rep. 5 7708Google Scholar
[2] Kumar K, Duan H, Hegde R S, Koh S C, Wei J N, Yang J K 2012 Nat. Nanotechnol. 7 557Google Scholar
[3] Yang Z, Albrow-Owen T, Cui H, et al. 2019 Science 365 1017Google Scholar
[4] Zheng B J, Li L F, Wang J Z, Zhuge M H, Su X, Xu Y, Yang Q, Shi Y, Wang X M 2020 Adv. Opt. Mater. 8 2000191Google Scholar
[5] Park H, Dan Y, Seo K, Yu Y J, Duane P K, Wober M, Crozier K B 2014 Nano Lett. 14 1804Google Scholar
[6] Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T, Crozier K B 2011 Nano Lett. 11 1851Google Scholar
[7] Park H, Crozier K B 2013 Sci. Rep. 3 2460Google Scholar
[8] Cao L, Fan P, Barnard E S, Brown A M, Brongersma M L 2010 Nano Lett. 10 2649Google Scholar
[9] Meng J J, Cadusch J J, Crozier K B 2020 Nano Lett. 20 320Google Scholar
[10] Sherif S M, Elsayed M Y, Shahada L A, Swillam M A 2019 Appl. Phys. A 125 769Google Scholar
[11] Kim S K, Day R W, Cahoon J F, Kempa T J, Song K D, Park H G, Lieber C M 2012 Nano Lett. 12 4971Google Scholar
[12] Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar
[13] Yu L, Misra S, Wang J, Qian S, Foldyna M, Xu J, Shi Y, Johnson E, Cabarrocas P R 2014 Sci. Rep. 4 4357
[14] Lu J, Qian S, Yu Z, Misra S, Yu L, Xu J, Shi Y, Roca i Cabarrocas P, Chen K 2015 Opt. Express 23 A1288Google Scholar
[15] Jiang Y, Zhai H, Cao W, Yang H, Liu H 2016 Electron. Mater. Lett. 12 841Google Scholar
[16] Ming T, Schleusener A, Yermukhamed D, Dietzek B, Sivakov V 2019 Mater. Res. Express 6 2053
[17] Ling C, Guo T, Shan M, Zhao L, Sui H, Ma S, Xue Q 2019 J. Alloys Compd. 797 1224Google Scholar
[18] Liang F X, Zhao X Y, Jiang J J, Hu J G, Xie W Q, Lü J, Zhang Z X, Wu D, Luo L B 2019 Small 15 e1903831Google Scholar
[19] Yu Z, Qian S, Yu L, Misra S, Zhang P, Wang J, Shi Y, Xu L, Xu J, Chen K, Rocai Cabarrocas P 2015 Opt. Express 23 5388Google Scholar
[20] Sumetsky M 2011 Opt. Lett. 36 145Google Scholar
[21] Solanki A, Gentile P, Calvo V, Rosaz G, Salem B, Aimez V, Drouin D, Pauc N 2012 Nano Energy 1 714Google Scholar
[22] Ajiki Y, Kan T, Yahiro M, Hamada A, Adachi J, Adachi C, Matsumoto K, Shimoyama I 2016 Appl. Phys. Lett. 108 151102Google Scholar
[23] Dhyani V, Jakhar A, Wellington J J, Das S 2019 J. Phys. D: Appl. Phys. 52 425103Google Scholar
[24] Bao J, Bawendi M G 2015 Nature 523 67Google Scholar
[25] Kurokawa U, Choi B I, Chang C C 2011 IEEE Sens. J. 11 1556Google Scholar
-
图 2 (a) 入射光为450 nm/550 nm/650 nm时的光场分布; (b) 入射光为450 nm/550 nm/650 nm时的吸收分布; (c) 不同入射光在器件轴线上的光场模分布曲线; (d) 不同入射光在器件轴线上的吸收密度分布曲线
Figure 2. The simulation results of the light field distribution (a) and the absorption (b) with the wavelength of 450, 550 and 650 nm, respectively. The light field distribution (c) and absorption (d) of the typical incident wavelength along the axial of Si nano-cone.
图 3 (a) 入射光沿轴线入射时光场分布(左)及吸收分布(右); (b) 入射光5º入射时光场分布(左)及吸收分布(右); (c) 入射光10º入射时光场分布(左)及吸收分布(右); (d) 入射光30º入射时光场分布
Figure 3. The simulation results of the light field distributions (left) and the absorption (right) with wavelength of 500 nm when the incident angle is (a) 0º, (b) 5º (c) 10º, and (d) 30º.
图 5 入射光波长为420 nm时有石墨烯电极器件(a)和无石墨烯电极器件(b)光场分布对比; (c) 不同入射光在有石墨烯电极器件轴线上的光场分布曲线; (d) 不同入射光在无石墨烯电极器件轴线上的光场分布曲线
Figure 5. (a) Comparisons of light field distribution between devices with (a) and without (b) graphene electrodes under incident light of with 420 nm. Light field distribution with typical incident light along the axis of nano-cone devices with (c) and without (d) graphene electrodes.
表 1 在具有不同几何结构的器件中, 不同波长的入射光吸收最大值位置比较
Table 1. Comparisons of the max absorption position in different size devices with different geometry.
器件1/nm 器件2/nm 器件3/nm r1 = 20 r2 = 80 L = 2000 r1 = 20 r2 = 100 L = 2000 r1 = 20 r2 = 80 L = 2500 500 nm入射光吸收峰值直径/nm 92 94 90 550 nm入射光吸收峰值直径/nm 106 107 107 两峰值距离/nm 234 172 325 表 2 无衬底器件与有衬底器件对入射光能量吸收积分对比
Table 2. The total absorption of the nano-cone devices with or without substrate.
入射光波长550 nm 无衬底器件 衬底器件(入
射光偏振垂
直衬底)衬底器件(入
射光偏振平
行于衬底)与无衬底器件
比值 (光场)1 1.08 1.14 与无衬底器件
比值 (吸收)1 1.16 1.30 -
[1] Lim S J, Leem D S, Park K B, et al. 2015 Sci. Rep. 5 7708Google Scholar
[2] Kumar K, Duan H, Hegde R S, Koh S C, Wei J N, Yang J K 2012 Nat. Nanotechnol. 7 557Google Scholar
[3] Yang Z, Albrow-Owen T, Cui H, et al. 2019 Science 365 1017Google Scholar
[4] Zheng B J, Li L F, Wang J Z, Zhuge M H, Su X, Xu Y, Yang Q, Shi Y, Wang X M 2020 Adv. Opt. Mater. 8 2000191Google Scholar
[5] Park H, Dan Y, Seo K, Yu Y J, Duane P K, Wober M, Crozier K B 2014 Nano Lett. 14 1804Google Scholar
[6] Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T, Crozier K B 2011 Nano Lett. 11 1851Google Scholar
[7] Park H, Crozier K B 2013 Sci. Rep. 3 2460Google Scholar
[8] Cao L, Fan P, Barnard E S, Brown A M, Brongersma M L 2010 Nano Lett. 10 2649Google Scholar
[9] Meng J J, Cadusch J J, Crozier K B 2020 Nano Lett. 20 320Google Scholar
[10] Sherif S M, Elsayed M Y, Shahada L A, Swillam M A 2019 Appl. Phys. A 125 769Google Scholar
[11] Kim S K, Day R W, Cahoon J F, Kempa T J, Song K D, Park H G, Lieber C M 2012 Nano Lett. 12 4971Google Scholar
[12] Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar
[13] Yu L, Misra S, Wang J, Qian S, Foldyna M, Xu J, Shi Y, Johnson E, Cabarrocas P R 2014 Sci. Rep. 4 4357
[14] Lu J, Qian S, Yu Z, Misra S, Yu L, Xu J, Shi Y, Roca i Cabarrocas P, Chen K 2015 Opt. Express 23 A1288Google Scholar
[15] Jiang Y, Zhai H, Cao W, Yang H, Liu H 2016 Electron. Mater. Lett. 12 841Google Scholar
[16] Ming T, Schleusener A, Yermukhamed D, Dietzek B, Sivakov V 2019 Mater. Res. Express 6 2053
[17] Ling C, Guo T, Shan M, Zhao L, Sui H, Ma S, Xue Q 2019 J. Alloys Compd. 797 1224Google Scholar
[18] Liang F X, Zhao X Y, Jiang J J, Hu J G, Xie W Q, Lü J, Zhang Z X, Wu D, Luo L B 2019 Small 15 e1903831Google Scholar
[19] Yu Z, Qian S, Yu L, Misra S, Zhang P, Wang J, Shi Y, Xu L, Xu J, Chen K, Rocai Cabarrocas P 2015 Opt. Express 23 5388Google Scholar
[20] Sumetsky M 2011 Opt. Lett. 36 145Google Scholar
[21] Solanki A, Gentile P, Calvo V, Rosaz G, Salem B, Aimez V, Drouin D, Pauc N 2012 Nano Energy 1 714Google Scholar
[22] Ajiki Y, Kan T, Yahiro M, Hamada A, Adachi J, Adachi C, Matsumoto K, Shimoyama I 2016 Appl. Phys. Lett. 108 151102Google Scholar
[23] Dhyani V, Jakhar A, Wellington J J, Das S 2019 J. Phys. D: Appl. Phys. 52 425103Google Scholar
[24] Bao J, Bawendi M G 2015 Nature 523 67Google Scholar
[25] Kurokawa U, Choi B I, Chang C C 2011 IEEE Sens. J. 11 1556Google Scholar
Catalog
Metrics
- Abstract views: 4669
- PDF Downloads: 166
- Cited By: 0