-
Absolute calibration can be realized by means of correlation photon which is generated by the parametric down conversion. The main difficulty lies in obtaining correlation information about photon flux when this method is applied to analog detector calibration process. A novel method of processing the photocurrent on the basis of detecting multimode spatial correlation is proposed. By converting the charge quantity contained in the photocurrent detected in a certain time interval into the photon counting, and by using double channels balance detection and measuring mean photon counts of each model to correct the dual channels fluctuations, the high accuracy calibration of quantum efficiency can be achieved. The photon fluxes of two channels are balanced by inserting an adjustable attenuator in one optical path. The cross section of pumping beam is comparable to the detection area to ensure three-wave colinearity, and the coherent area of the correlation photons is obtained by measuring pump beam waist and lens focus length. With the known detection area, coherence time and coherence area, the average photon number of each mode is computed. This process should be performed under the average photon number of each mode as a reference which could be used for the proportional scaling of equivalent photons of two channels. Based on this new approach, the absolute power responsivity of an InSb detector is calibrated at 3390 nm with correlated photon pairs at 631 and 3390 nm. The calibration procedure and experiments are described and the uncertainty of this method is analyzed. The results show a relative combination uncertainty of about 7.785% for this calibration method, which agrees well with the result independently obtained in the national photoelectronic metrology laboratory within a relative difference of about 3.6%. This result verifies that the quantum efficiency of an analog detector can be calibrated by the correlated photon method, which has potential applications in highly accurate radiometric calibration without external standards.
[1] Zheng X B, Wu H Y, Zhang J P 2000 Chin. Sci. Bull. 45 2009
[2] Zheng X B, Wu H Y, Zhang J P 2001 Acta Opt. Sin. 21 749 (in Chinese) [郑小兵, 吴浩宇, 章骏平 2001 光学学报 21 749]
[3] Hu L Y, Wang S, Zhang Z M 2012 Chin. Phys. B 21 064207
[4] Xu X F, Zhu S Q 2009 Chin. Phys. B 18 1512
[5] Pan G X, Xiao R J, Zhou L 2013 Chin. Phys. B 22 010307
[6] Xiang G Y, Guo G C 2013 Chin. Phys. B 22 110601
[7] Klyshko D N 1980 Sov. Quantum. Electron. 10 1112
[8] Brida G, Castelletto S, Novero C, 1999 J. Opt. Soc. Am. B 16 1623
[9] Li J J, Zheng X B, Lu Y J 2008 Chin. Opt. Lett. 6 472
[10] L L, Zhang Y C, Lin Y D 2012 Acta Opt. Sin. 32 0112004 (in Chinese) [吕亮, 张寅超, 林延东 2012 光学学报 32 0112004]
[11] Odate S, Yoshizawa A, Fukuda D 2007 Opt. Lett. 32 3176
[12] Chang J, Wu L A 2003 Acta Phys. Sin. 52 1132 (in Chinese) [常君, 吴令安 2003 物理学报 52 1132]
[13] Brida G, Genovese M 2006 Opt. Soc. Am. B 23 2158
[14] Brida G, Chekhova M, Genovese M, Ruo-Berchera I 2008 Opt. Express 16 12550
[15] Brida G, Chekhova M, Genovese M, Rastello M L, Ruo B I 2009 J. Mod. Opt. 56 401
[16] Brida G, Chekhova M, Genovese M 2007 Instrumentation and Measurement 56 275
[17] Berchera I R 2009 Adv. Sci. Lett. 2
[18] Brida G, Degiovanni I P 2010 Opt. Express 18 20572
[19] Lindenthal M, Kofler J 2006 Appl. Opt. 45 6059
[20] Perina J, Ondrej, Haderka J 2012 Opt. Lett. 37 2075
[21] Meda A, Ruo-Berchera I, Degiovanni I P 2014 Appl. Phys. Lett. 105 10113
[22] Fei Y T 2004 Error Theory and Data Processing (Beijing: China Machine Press) pp82-88 (in Chinses) [费页泰 2004 误差理论与数据处理(北京: 机械工业出版社) 第82–88页]
-
[1] Zheng X B, Wu H Y, Zhang J P 2000 Chin. Sci. Bull. 45 2009
[2] Zheng X B, Wu H Y, Zhang J P 2001 Acta Opt. Sin. 21 749 (in Chinese) [郑小兵, 吴浩宇, 章骏平 2001 光学学报 21 749]
[3] Hu L Y, Wang S, Zhang Z M 2012 Chin. Phys. B 21 064207
[4] Xu X F, Zhu S Q 2009 Chin. Phys. B 18 1512
[5] Pan G X, Xiao R J, Zhou L 2013 Chin. Phys. B 22 010307
[6] Xiang G Y, Guo G C 2013 Chin. Phys. B 22 110601
[7] Klyshko D N 1980 Sov. Quantum. Electron. 10 1112
[8] Brida G, Castelletto S, Novero C, 1999 J. Opt. Soc. Am. B 16 1623
[9] Li J J, Zheng X B, Lu Y J 2008 Chin. Opt. Lett. 6 472
[10] L L, Zhang Y C, Lin Y D 2012 Acta Opt. Sin. 32 0112004 (in Chinese) [吕亮, 张寅超, 林延东 2012 光学学报 32 0112004]
[11] Odate S, Yoshizawa A, Fukuda D 2007 Opt. Lett. 32 3176
[12] Chang J, Wu L A 2003 Acta Phys. Sin. 52 1132 (in Chinese) [常君, 吴令安 2003 物理学报 52 1132]
[13] Brida G, Genovese M 2006 Opt. Soc. Am. B 23 2158
[14] Brida G, Chekhova M, Genovese M, Ruo-Berchera I 2008 Opt. Express 16 12550
[15] Brida G, Chekhova M, Genovese M, Rastello M L, Ruo B I 2009 J. Mod. Opt. 56 401
[16] Brida G, Chekhova M, Genovese M 2007 Instrumentation and Measurement 56 275
[17] Berchera I R 2009 Adv. Sci. Lett. 2
[18] Brida G, Degiovanni I P 2010 Opt. Express 18 20572
[19] Lindenthal M, Kofler J 2006 Appl. Opt. 45 6059
[20] Perina J, Ondrej, Haderka J 2012 Opt. Lett. 37 2075
[21] Meda A, Ruo-Berchera I, Degiovanni I P 2014 Appl. Phys. Lett. 105 10113
[22] Fei Y T 2004 Error Theory and Data Processing (Beijing: China Machine Press) pp82-88 (in Chinses) [费页泰 2004 误差理论与数据处理(北京: 机械工业出版社) 第82–88页]
Catalog
Metrics
- Abstract views: 5906
- PDF Downloads: 155
- Cited By: 0