Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of identifying parameters of a time-varying time-delay chaotic system

Chai Qin-Qin

Citation:

A method of identifying parameters of a time-varying time-delay chaotic system

Chai Qin-Qin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Unknown time-varying parameters, including time-delay and system parameters, commonly exist in chaotic systems. These unknown parameters increase the difficulties in controlling the chaotic systems, and make most of the existing control methods fail to be applied. However, if these parameters can be estimated, they will facilitate the controller design. Therefore, in this paper, a parameter identification problem for a general time-delay chaotic system with unknown and time-varying parameters is considered, where these unknown time-delay and parameters are slow time-varying. It is very difficult to solve this problem analytically. Thus, a unified identification method is proposed to solve the identification problem numerically. To solve this identification problem, firstly, the time horizon is divided into several subintervals evenly. Then the time-varying parameters are approximated by piecewise constant functions. The height vectors of the piecewise constant functions are unknown and to be determined. Furthermore, the heights of the piecewise constant functions keep constant between each pair of the successive partition time points but switch values at the partition time points. After the approximation, the original identification problem for finding the nonlinear functions of the unknown parameters is transformed into a problem of selecting approximate parameter vectors, where the heights of the piecewise constan functions are unknown parameter vectors to be determined. Secondly, to solve the problem of selecting approximate parameter vectors quickly, the partial gradients of the objective function with respect to the parameter vectors are derived; and they are then integrated with a gradient-based procedure to obtain the unknown heights. As the number of partitions for the piecewise function increases, the optimal results of the approximate problem will approach to the optimal results of the original parameter identification problem. Hence, the optimal piecewise functions will approach to the real nonlinear functions for the unknown parameters. Finally, parameter identification experiments on time-delayed Mackey-Class and time-delayed logistic chaotic systems are carried out. The effects of the partition number on the estimated results are discussed. Numerical results demonstrate that when some switching times of the unknown parameters do not coincide with any partition time points, small error between the estimated results and the real values are present. However, these errors can be filtered and the estimated results are consistent well with the real values. Hence, the proposed method is reasonable and effective.
      Corresponding author: Chai Qin-Qin, kppqing@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61304260) and the Fuzhou University Fund for Talents, China (Grant No. XRC-1353).
    [1]

    Xu J, Pei L J 2006 Adv. Mech. 36 17 (in Chinese) [徐鉴, 裴利军 2006 力学进展 36 17]

    [2]

    Denis-Vidal L, Jauberthie C, Joly-Blanchard G 2006 IEEE Trans. Automat. Contr. 51 154

    [3]

    Zeng Z Z 2013 Acta Phys. Sin. 62 030504 (in Chinese) [曾喆昭 2013 物理学报 62 030504]

    [4]

    Louodop P, Fotsin H, Samuel B, Soup Tewa Kammogne A 2014 J. Vib. Control 20 815

    [5]

    Wang S, Yang J, Luan H X 2014 J. Northeast Norm. Univ: (Nat. Sci. Ed.) 46 69 (in Chinese) [王石, 杨吉, 栾红霞 2014 东北师大学报 (自然科学版) 46 69]

    [6]

    Leung Y T A, Li X F, Chu Y D, Zhang H 2015 Chin. Phys. B 24 10050

    [7]

    Luo R Z, Zeng Y H 2015 Nonlinear Dyn. 80 989

    [8]

    Wu Z G, Shi P, Su H Y, Chu J 2014 IEEE Trans. Fuzzy Syzt. 22 153

    [9]

    Chen Y Q, Xu H L 2012 Syst. Eng. Theory Pract. 32 1958 (in Chinese) [陈远强, 许弘雷 2012 系统工程理论与实践 32 1958]

    [10]

    Wu X L, Liu J, Zhang J H, Wang Y 2014 Acta Phys. Sin. 63 160507 (in Chinese) [吴学礼, 刘杰, 张建华, 王英 2014 物理学报 63 160507]

    [11]

    Jian J G, Wan P 2015 Physica A 431 152

    [12]

    Huang Y, Liu Y F, Peng Z M, Ding Y J 2015 Acta Phys. Sin. 64 030505 (in Chinese) [黄宇, 刘玉峰, 彭志敏, 丁艳军 2015 物理学报 64 030505]

    [13]

    Jiang Q Y, Wang L, Hei X H 2015 J. Comput. Sci-Neth. 8 20

    [14]

    Gu W D, Sun Z Y, Wu X M, Yu C B 2013 Chin. Phys. B 22 090203

    [15]

    Zhao L D, Hu J B, Fang J A, Cui W X, Xu Y L, Wang X 2013 ISA Trans. 52 738

    [16]

    Wang S E, Wang W W, Liu F C, Tang Y G, Guan X P 2015 Nonlinear Dyn. 81 1081

    [17]

    Chai Q Q, Loxton R, Teo K L, Yang C H 2013 J. Ind. Manag. Optim. 9 471

    [18]

    Na J, Ren X M, Xia Y Q 2014 Syst. Control Lett. 66 43

    [19]

    Zunino L, Soriano M C, Fischer I, Rosso O A, Mirasso C R 2010 Phys. Rev. E 82 046212

    [20]

    Teo K L, Goh C J, Wong K H 1991 A Unified Computational Approach to Optimal Control Problems (Essex: Longman Scientific and Technical) pp253-278

    [21]

    Burden R L, Faires J D 2010 Numerical Analysis (Singapore: Cengage Learning) pp136-143

    [22]

    Wang F P, Wang Z J, Guo J B 2003 J. Tsinghua Univ. (Sci. and Tech.) 43 296 (in Chinese)[汪芙平, 王赞基, 郭静波 2003 清华大学学报(自然科学版) 43 296]

    [23]

    Mendes R, Kennedy J, Neves J 2004 IEEE Trans. Evolut. Comput. 8 204

  • [1]

    Xu J, Pei L J 2006 Adv. Mech. 36 17 (in Chinese) [徐鉴, 裴利军 2006 力学进展 36 17]

    [2]

    Denis-Vidal L, Jauberthie C, Joly-Blanchard G 2006 IEEE Trans. Automat. Contr. 51 154

    [3]

    Zeng Z Z 2013 Acta Phys. Sin. 62 030504 (in Chinese) [曾喆昭 2013 物理学报 62 030504]

    [4]

    Louodop P, Fotsin H, Samuel B, Soup Tewa Kammogne A 2014 J. Vib. Control 20 815

    [5]

    Wang S, Yang J, Luan H X 2014 J. Northeast Norm. Univ: (Nat. Sci. Ed.) 46 69 (in Chinese) [王石, 杨吉, 栾红霞 2014 东北师大学报 (自然科学版) 46 69]

    [6]

    Leung Y T A, Li X F, Chu Y D, Zhang H 2015 Chin. Phys. B 24 10050

    [7]

    Luo R Z, Zeng Y H 2015 Nonlinear Dyn. 80 989

    [8]

    Wu Z G, Shi P, Su H Y, Chu J 2014 IEEE Trans. Fuzzy Syzt. 22 153

    [9]

    Chen Y Q, Xu H L 2012 Syst. Eng. Theory Pract. 32 1958 (in Chinese) [陈远强, 许弘雷 2012 系统工程理论与实践 32 1958]

    [10]

    Wu X L, Liu J, Zhang J H, Wang Y 2014 Acta Phys. Sin. 63 160507 (in Chinese) [吴学礼, 刘杰, 张建华, 王英 2014 物理学报 63 160507]

    [11]

    Jian J G, Wan P 2015 Physica A 431 152

    [12]

    Huang Y, Liu Y F, Peng Z M, Ding Y J 2015 Acta Phys. Sin. 64 030505 (in Chinese) [黄宇, 刘玉峰, 彭志敏, 丁艳军 2015 物理学报 64 030505]

    [13]

    Jiang Q Y, Wang L, Hei X H 2015 J. Comput. Sci-Neth. 8 20

    [14]

    Gu W D, Sun Z Y, Wu X M, Yu C B 2013 Chin. Phys. B 22 090203

    [15]

    Zhao L D, Hu J B, Fang J A, Cui W X, Xu Y L, Wang X 2013 ISA Trans. 52 738

    [16]

    Wang S E, Wang W W, Liu F C, Tang Y G, Guan X P 2015 Nonlinear Dyn. 81 1081

    [17]

    Chai Q Q, Loxton R, Teo K L, Yang C H 2013 J. Ind. Manag. Optim. 9 471

    [18]

    Na J, Ren X M, Xia Y Q 2014 Syst. Control Lett. 66 43

    [19]

    Zunino L, Soriano M C, Fischer I, Rosso O A, Mirasso C R 2010 Phys. Rev. E 82 046212

    [20]

    Teo K L, Goh C J, Wong K H 1991 A Unified Computational Approach to Optimal Control Problems (Essex: Longman Scientific and Technical) pp253-278

    [21]

    Burden R L, Faires J D 2010 Numerical Analysis (Singapore: Cengage Learning) pp136-143

    [22]

    Wang F P, Wang Z J, Guo J B 2003 J. Tsinghua Univ. (Sci. and Tech.) 43 296 (in Chinese)[汪芙平, 王赞基, 郭静波 2003 清华大学学报(自然科学版) 43 296]

    [23]

    Mendes R, Kennedy J, Neves J 2004 IEEE Trans. Evolut. Comput. 8 204

  • [1] Li Xiao-Jie, Yu Yun-Tai, Zhang Zhi-Wen, Dong Xiao-Rui. External characteristics of lithium-ion power battery based on electrochemical aging decay model. Acta Physica Sinica, 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [2] Study on External Characteristics of Lithium Ion Power Battery Based on ADME Model. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211401
    [3] Wang Cong, Zhang Hong-Li. Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm. Acta Physica Sinica, 2016, 65(6): 060503. doi: 10.7498/aps.65.060503
    [4] Li Rui, Zhang Guang-Jun, Yao Hong, Zhu Tao, Zhang Zhi-Hao. Generalized dislocated lag projective synchronization of fractional chaotic systems with fully uncertain parameters. Acta Physica Sinica, 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [5] Liu Le-Zhu, Zhang Ji-Qian, Xu Gui-Xia, Liang Li-Si, Wang Mao-Sheng. A chaotic secure communication method based on chaos systems partial series parameter estimation. Acta Physica Sinica, 2014, 63(1): 010501. doi: 10.7498/aps.63.010501
    [6] Cao Xiao-Qun, Zhang Wei-Min, Song Jun-Qiang, Zhu Xiao-Qian, Zhao Jun. Parameter identification of map chaotic system with discrete variational method. Acta Physica Sinica, 2012, 61(2): 020507. doi: 10.7498/aps.61.020507
    [7] Hu Shou-Song, Tao Hong-Feng. Time-delayed generalized projective synchronization of piecewise chaotic system with unknown parameters. Acta Physica Sinica, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [8] Liu Shu-Tang, Qiao Wei, Sun Jie. Parameter identification of generalized Julia sets. Acta Physica Sinica, 2011, 60(7): 070510. doi: 10.7498/aps.60.070510
    [9] Li Nong, Li Jian-Fen, Liu Yu. Tracking control and parameters identification of a class of chaotic systems with unknown parameters. Acta Physica Sinica, 2011, 60(5): 050507. doi: 10.7498/aps.60.050507
    [10] Yang Dong-Sheng, Zhang Hua-Guang, Zhao Yan, Song Chong-Hui, Wang Ying-Chun. Fuzzy adaptive H∞ synchronization of time-varying delayed chaotic systems with unknown parameters based on LMI technique. Acta Physica Sinica, 2010, 59(3): 1562-1567. doi: 10.7498/aps.59.1562
    [11] Li Nong, Li Jian-Fen, Liu Yu-Ping. Anti-synchronization of uncertain chaotic system and parameters identification. Acta Physica Sinica, 2010, 59(9): 5954-5958. doi: 10.7498/aps.59.5954
    [12] Wang Ming-Jun, Wang Xing-Yuan. A secure communication scheme based on parameter identification of first order time-delay chaotic system. Acta Physica Sinica, 2009, 58(3): 1467-1472. doi: 10.7498/aps.58.1467
    [13] Wen Shu-Huan. A fast algorithm for adaptive predictive function of Hénon chaotic system. Acta Physica Sinica, 2009, 58(8): 5209-5213. doi: 10.7498/aps.58.5209
    [14] Wen Shu-Huan, Wang Zhe, Liu Fu-Cai. A fast algorithm for adaptive generalized predictive control of Hénon chaotic systems. Acta Physica Sinica, 2009, 58(6): 3753-3758. doi: 10.7498/aps.58.3753
    [15] Jiang Dan, Li Song-Jing, Bao Gang. Parameter identification of gas bubble model in pressure pulsations using genetic algorithms. Acta Physica Sinica, 2008, 57(8): 5072-5080. doi: 10.7498/aps.57.5072
    [16] Li Jian-Fen, Li Nong, Cai Li, Zhang Bin. Parameters identification and adaptive synchronization of uncertain Chua’s circuit. Acta Physica Sinica, 2008, 57(12): 7500-7505. doi: 10.7498/aps.57.7500
    [17] Li Nong, Li Jian-Fen, Liu Yu-Ping, Ma Jian. Parameter identification based on linear feedback control for uncertain chaotic system. Acta Physica Sinica, 2008, 57(3): 1404-1408. doi: 10.7498/aps.57.1404
    [18] Peng Hai-Peng, Li Li-Xiang, Yang Yi-Xian, Zhang Xiao-Hong, Gao Yang. Parameter identification of first order time-delay chaotic system. Acta Physica Sinica, 2007, 56(11): 6245-6249. doi: 10.7498/aps.56.6245
    [19] Wang Xing-Yuan, Wu Xiang-Jun. Parameter identification and adaptive synchronization of uncertain Chen system. Acta Physica Sinica, 2006, 55(2): 605-609. doi: 10.7498/aps.55.605
    [20] Guan Xin-Ping, Peng Hai-Peng, Li Li-Xiang, Wang Yi-Qun. . Acta Physica Sinica, 2001, 50(1): 26-29. doi: 10.7498/aps.50.26
Metrics
  • Abstract views:  6035
  • PDF Downloads:  280
  • Cited By: 0
Publishing process
  • Received Date:  07 July 2015
  • Accepted Date:  30 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回