Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical properties of novel amorphous superconducting thin film materials for superconducting nanowire single-photon detectors

XU Luo ZHANG Xiaofu YOU Lixing

Citation:

Physical properties of novel amorphous superconducting thin film materials for superconducting nanowire single-photon detectors

XU Luo, ZHANG Xiaofu, YOU Lixing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Amorphous superconducting thin film materials have the advantages of high superconducting uniformity and good optical response sensitivity, which make them ideal materials for fabricating large-area and mid-infrared superconducting nanowire single-photon detectors (SNSPD). In this paper, three series of different amorphous superconducting films are deposited on Si wafers by room-temperature magnetron co-sputtering. For these films, the dependence of their physical properties, i.e. critical temperature Tc, Ginzburg-Landau coherence length ξ(0), normal-state electron diffusion coefficient De, magnetic penetration depth λ(0), and superconducting energy gap Δ(0), on film thickness is systematically investigated. Compared with amorphous tungsten silicide (WSi) and molybdenum germanide (MoGe) superconducting thin films, WGe alloys and WSi have similar superconducting properties, including critical temperature and coherence length, slightly lower normal-state electron diffusion coefficient and higher magnetic penetration depth. Compared with MoGe, both WGe and WSi alloys exhibit larger normal-state electron diffusion coefficient and higher magnetic penetration depths. By studying the superconducting properties of three different amorphous thin films, this research provides new material choices and experimental evidence for developing and optimizing the performance of large-area, high-sensitivity superconducting nanowire single-photon detectors.
  • 图 1  零磁场下非晶薄膜WGe (a), WSi (b), MoGe (c)超导转变的厚度依赖关系; (d) WGe, WSi和MoGe薄膜的临界温度的厚度依赖性

    Figure 1.  Thickness dependence of normal to superconducting transition for amorphous WGe (a), WSi (b), MoGe (c) films in absence of magnetic field; (d) the critical temperatures as functions of the film thickness for WGe, WSi and MoGe.

    图 2  不同磁场下超导薄膜材料薄层电阻的温度依赖曲线 (a) 4 nm WGe; (b) 4 nm WSi; (c) 4 nm MoGe; (d) 100 nm WGe; (e) 100 nm WSi; (f) 100 nm MoGe

    Figure 2.  Temperature dependence of sheet resistance at different magnetic fields: (a) 4 nm WGe; (b) 4 nm WSi; (c) 4 nm MoGe; (d) 100 nm WGe; (e) 100 nm WSi; (f) 100 nm MoGe.

    图 3  不同厚度WGe (a), WSi (b)和MoGe (c)薄膜临界磁场的温度依赖曲线(通过对温度依赖曲线的线性拟合, 提取出绝对零度上临界磁场Bc2(0))

    Figure 3.  Critical magnetic field of WGe (a), WSi (b), MoGe (c) films (points) of different thickness as a function of temperature. Through linear fitting of these temperature dependence, the absolute zero critical magnetic field Bc2(0) are extracted.

    图 4  (a) 绝对零度下的GL相干长度ξ(0)与薄膜厚度的函数关系; (b) 正常态电子扩散系数De与薄膜厚度的函数关系; (c) 磁场穿透深度λ与薄膜厚度的函数关系

    Figure 4.  (a) The GL coherence length at absolute zero temperature ξ(0) as a function of film thickness; (b) thickness dependence of the diffusion constant of the electrons in the normal-conducting state; (c) the magnetic penetration depth λ(0) as a function of film thickness.

    表 1  不同厚度WGe薄膜材料的超导物性参数

    Table 1.  Superconducting physical property parameters of the WGe film with different thicknesses.

    样品 d
    /nm
    Rsn
    Tc
    /K
    ξ(0)
    /nm
    De
    /(cm2·s–1)
    Δ(0)
    /meV
    λ(0)
    /nm
    WGe 4 471.25 3.84 10.55 0.76 0.58 734
    5 371.80 4.00 10.13 0.74 0.61 714
    10 185.30 4.55 9.54 0.71 0.69 668
    50 37.09 4.85 8.17 0.53 0.74 647
    100 18.49 4.92 7.95 0.50 0.75 642
    DownLoad: CSV

    表 2  不同厚度WSi薄膜材料的超导物性参数

    Table 2.  Superconducting physical property parameters of the WSi film with different thicknesses.

    样品d
    /nm
    Rsn
    Tc
    /K
    ξ(0)
    /nm
    De
    /(cm2·s–1)
    Δ(0)
    /meV
    λ(0)
    /nm
    WSi4444.653.9010.790.810.59707
    5354.904.1210.480.800.63687
    6298.854.2610.220.770.65680
    8221.844.449.800.730.67662
    10176.254.619.510.700.70648
    2088.314.819.190.680.73635
    3057.954.878.830.620.74626
    5035.474.918.480.570.75630
    10017.654.948.270.550.75626
    DownLoad: CSV

    表 3  不同厚度MoGe薄膜材料的超导物性参数

    Table 3.  Superconducting physical property parameters of the MoGe film with different thicknesses.

    样品d
    /nm
    Rsn
    Tc
    /K
    ξ(0)
    /nm
    De
    /(cm2·s–1)
    Δ(0)
    /meV
    λ(0)
    /nm
    MoGe4378.755.318.140.620.81560
    5298.305.967.660.600.91524
    8186.596.377.420.600.97507
    10148.766.617.250.591.00497
    2074.157.036.730.531.07481
    3049.127.146.540.501.09476
    10014.527.286.180.461.11468
    DownLoad: CSV
  • [1]

    Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114Google Scholar

    [2]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250Google Scholar

    [3]

    Shibata H, Fukao K, Kirigane N, Karimoto S, Yamamoto H 2017 IEEE Trans. Appl. Supercond. 27 2200504

    [4]

    Zhang W J, Huang J, Zhang C J, You L X, Lv C L, Zhang L, Li H, Wang Z, Xie X M 2019 IEEE Trans. Appl. Supercond. 29 2200204

    [5]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570Google Scholar

    [6]

    Khatri F I, Robinson B S, Semprucci M D, Boroson D M 2015 Acta Astronaut. 111 77Google Scholar

    [7]

    Zhang B, Guan Y Q, Xia L H, Dong D X, Chen Q, Xu C, Wu C, Huang H X, Zhang L B, Kang L, Chen J, Wu P H 2021 Supercond. Sci. Technol. 34 034005Google Scholar

    [8]

    Taylor G G, Morozov D, Gemmell N R, Erotokritou K, Miki S, Terai H, Hadfield R H 2019 Opt. Express 27 38147Google Scholar

    [9]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar

    [10]

    张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨 2021 物理学报 70 198501Google Scholar

    Zhang B, Chen Q, Guan Y Q, Jin F F, Wang H, Zhang L B, Tu X C, Zhao Q Y, Jia X Q, Kang L, Chen J, Wu P H 2021 Acta Phys. Sin. 70 198501Google Scholar

    [11]

    Verma V B, Korzh B, Walter A B, Lita A E, Briggs R M, Colangelo M, Zhai Y, Wollman E E, Beyer A D, Allmaras J P, Vora H, Zhu D, Schmidt E, Kozorezov A G, Berggren K K, Mirin R P, Nam S W, Shaw M D 2021 APL Photonics 6 056101Google Scholar

    [12]

    Chen L, Schwarzer D, Lau J A, Verma V B, Stevens M J, Marsili F, Mirin R P, Nam S W, Wodtke A M 2018 Opt. Express 26 14859Google Scholar

    [13]

    尤立星 2018 红外与激光工程 47 1202001Google Scholar

    You L X 2018 Infrared Laser Eng. 47 1202001Google Scholar

    [14]

    Miki S, Takeda M, Fujiwara M, Sasaki M, Otomo A, Wang Z 2009 Appl. Phys. Lett. 2 075002

    [15]

    Sun R, Makise K, Zhang L, Terai H, Wang Z 2016 AIP Adv. 6 065119Google Scholar

    [16]

    Cheng R S, Wang S H, Tang H X 2019 Appl. Phys. Lett. 115 241101Google Scholar

    [17]

    Tanner M G, Natarajan C M, Pottapenjara V K, O'Connor J A, Warburton R J, Hadfield R H, Baek B, Nam S, Dorenbos S N, Ureña E B, Zijlstra T, Klapwijk T M, Zwiller V 2010 Appl. Phys. Lett. 96 221109Google Scholar

    [18]

    Dorenbos S N, Reiger E M, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 131101Google Scholar

    [19]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photonics 7 210Google Scholar

    [20]

    Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114Google Scholar

    [21]

    Verma V B, Lita A E, Vissers M R, Marsili F, Pappas D P, Mirin R P, Nam S W 2014 Appl. Phys. Lett. 105 022602Google Scholar

    [22]

    Zhang X, Engel A, Wang Q, Schilling A, Semenov A, Sidorova M, Hübers H W, Charaev I, Ilin K, Siegel M 2016 Phys. Rev. B 94 174509Google Scholar

    [23]

    Häussler M, Mikhailov M Y, Wolff M A, Schuck C 2020 APL Photonics 5 076106Google Scholar

    [24]

    Baek B, Lita A E, Verma V, Nam S W 2011 Appl. Phys. Lett. 98 251105Google Scholar

    [25]

    Wollman E E, Allmaras J P, Beyer A D, Korzh B, Runyan M C, Narváez L, Farr W H, Marsili F, Briggs R M, Miles G J, Shaw M D 2024 Opt. Express 32 48185Google Scholar

    [26]

    Verma V B, Korzh B, Bussières F, Horansky R D, Dyer S D, Lita A E, Vayshenker I, Marsili F, Shaw M D, Zbinden H, Mirin R P, Nam S W 2015 Opt. Express 23 33792Google Scholar

    [27]

    Zhang X F, Ma R Y, Guo Z M, Zhang C J, Chen D, Huan Q C, Huang J, Zhang X Y, Xiao Y, Yu H Q, Liu X Y, Li H, Wang Z, Xie X M, You L X 2023 Opt. Express 31 30650Google Scholar

    [28]

    Ma R, Guo Z, Chen D, Dai X, Xiao Y, Zhang C, Xiong J, Huang J, Zhang X, Liu X, Rong L, Li H, Zhang X, You L 2025 Adv. Photonics Nexus 4 026003

    [29]

    Banerjee A, Baker L J, Doye A, Nord M, Heath R M, Erotokritou K, Bosworth D, Barber Z H, MacLaren I, Hadfield R H 2017 Supercond. Sci. Technol. 30 084010Google Scholar

    [30]

    Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt. Express 25 26792Google Scholar

    [31]

    Ercolano P, Zhang X, Pepe G P, You L 2025 Supercond. Sci. Technol. 38 015011Google Scholar

    [32]

    Yang S J, Chen Y, Sun L M, Zhou H, Li Y M, Huang J, Zheng X Q, Ma R Y, Xiong J M, Wan Z, Liu X Y, Li H, Zheng J H, Peng W, Zhang X F, You L X 2025 Appl. Phys. Lett. 126 162601Google Scholar

    [33]

    Zhang X F, Charaev I, Liu H L, Zhou T, Zhu D, Berggren K K, Schilling A 2021 Supercond. Sci. Technol. 34 095003Google Scholar

    [34]

    Johnson W L, Tsuei C C, Raider S I, Laibowitz R B 1979 J. Appl. Phys. 50 4240Google Scholar

    [35]

    Zhang X, Lita A E, Sidorova M, Verma V B, Wang Q, Nam S W, Semenov A, Schilling A 2018 Phys. Rev. B 97 174502Google Scholar

    [36]

    Skocpol W J, Tinkham M 1975 Rep. Prog. Phys. 38 1049Google Scholar

    [37]

    Zhang X F, Lita A E, Smirnov K, Liu H, Zhu D, Verma V B, Nam S W, Schilling A 2020 Phys. Rev. B 101 060508Google Scholar

    [38]

    Zhang X F, Shu R, Liu H L, Elsukova A, Persson P O A, Schilling A, Von Rohr F O, Eklund P 2022 Commun. Phys. 5 282Google Scholar

    [39]

    Helfand E, Werthamer N R 1966 Phys. Rev. 147 288Google Scholar

    [40]

    Zhang X F, Huan Q C, Ma R Y, Zhang X Y, Huang J, Liu X Y, Peng W, Li H, Wang Z, Xie X M, You L X 2024 Adv. Quantum Technol. 7 2300378Google Scholar

    [41]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [42]

    London H, London F 1935 Proc. R. Soc. London, Ser. A 149 71Google Scholar

    [43]

    Tinkham M, Emery V 1996 Phys. Today 49 65

    [44]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [45]

    Zotova A N, Vodolazov D Y 2012 Phys. Rev. B 85 024509Google Scholar

  • [1] Zhang Xing, Liu Yu-Lin, Li Gang, Yan Shao-An, Xiao Yong-Guang, Tang Ming-Hua. Erratum: Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit[Acta Phys. Sin. 2024, 73(6): 066103]. Acta Physica Sinica, doi: 10.7498/aps.73.079901
    [2] Shi Zhong-Yu, Dai Xu-Cheng, Wang Hao-Yu, Mai Zhan-Zhang, Ouyang Peng-Hui, Wang Yi-Zhuo, Chai Ya-Qiang, Wei Lian-Fu, Liu Xu-Ming, Pan Chang-Zhao, Guo Wei-Jie, Shu Shi-Bo, Wang Yi-Wen. Noise spectrum analysis of superconducting kinetic inductance detectors. Acta Physica Sinica, doi: 10.7498/aps.73.20231504
    [3] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, doi: 10.7498/aps.73.20231526
    [4] Chen Zhi-Gang, Zhang Wei-Jun, Zhang Xing-Yu, Wang Yu-Ze, Xiong Jia-Min, Hong Yi-Yu, Yuan Pu-Sheng, Wu Ling, Wang Zhen, You Li-Xing. Cryogenic DC-coupled readout electronics for high-speed superconducting nanowire single-photon detectors based on a commercial operational amplifier. Acta Physica Sinica, doi: 10.7498/aps.73.20240398
    [5] He Guang-Long, Xue Li, Wu Cheng, Li Hui, Yin Rui, Dong Da-Xing, Wang Hao, Xu Chi, Huang Hui-Xin, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Xia Ling-Hao, Zhang La-Bao, Wu Pei-Heng. Miniaturized superconducting single-photon detection system for airborne platform. Acta Physica Sinica, doi: 10.7498/aps.72.20230248
    [6] Xi Ling-Ling, Yang Xiao-Yan, Zhang Tian-Zhu, Xiao You, You Li-Xing, Li Hao. High comprehensive performance superconducting nanowire single photon detector. Acta Physica Sinica, doi: 10.7498/aps.72.20230326
    [7] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, doi: 10.7498/aps.71.20221594
    [8] Ma Lu-Yao, Zhang Xing-Yu, Shu Zhi-Yun, Xiao You, Zhang Tian-Zhu, Li Hao, You Li-Xing. Superconducting nanowire single photon detector under AC-bias with self-differential readout. Acta Physica Sinica, doi: 10.7498/aps.71.20220373
    [9] Zhang Xiao, Lü Jia-Yu, Guan Yan-Qiu, Li Hui, Wang Xi-Ming, Zhang La-Bao, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Wu Pei-Heng. Design and fabrication of single photon detector with ultra-large area superconducting nanowire array. Acta Physica Sinica, doi: 10.7498/aps.71.20221569
    [10] Huang Dian, Dai Wan-Lin, Wang Yi-Wen, He Qing, Wei Lian-Fu. Noise processing of superconducting kinetic inductance single photon detector. Acta Physica Sinica, doi: 10.7498/aps.70.20210185
    [11] Zhang Wen-Ying, Hu Peng, Xiao You, Li Hao, You Li-Xing. High-efficiency polarization-insensitive superconducting nanowire single photon detector. Acta Physica Sinica, doi: 10.7498/aps.70.20210486
    [12] Zhang Biao, Chen Qi, Guan Yan-Qiu, Jin Fei-Fei, Wang Hao, Zhang La-Bao, Tu Xue-Cou, Zhao Qing-Yuan, Jia Xiao-Qing, Kang Lin, Chen Jian, Wu Pei-Heng. Research progress of photon response mechanism of superconducting nanowire single photon detector. Acta Physica Sinica, doi: 10.7498/aps.70.20210652
    [13] Yan Xia-Chao, Zhu Jiang, Zhang La-Bao, Xing Qiang-Lin, Chen Ya-Jun, Zhu Hong-Quan, Li Jian-Ting, Kang Lin, Chen Jian, Wu Pei-Heng. Model of bit error rate for laser communication based on superconducting nanowire single photon detector. Acta Physica Sinica, doi: 10.7498/aps.66.198501
    [14] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, doi: 10.7498/aps.65.188501
    [15] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, doi: 10.7498/aps.64.228501
    [16] Zhang Qing-Ya, Dong Wen-Hui, He Gen-Fang, Li Tie-Fu, Liu Jian-She, Chen Wei. Review on superconducting transition edge sensor based single photon detector. Acta Physica Sinica, doi: 10.7498/aps.63.200303
    [17] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, doi: 10.7498/aps.61.208501
    [18] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, doi: 10.7498/aps.60.038501
    [19] WANG DE-NING, CHEN HONG, WANG WEI-YUAN. INVESTIGATION OF THERMAL CONDUCTANCE ON BOLOMETRIC INFRARED DETECTOR OF HI GH Tc SUPERCONDUCTING FILM GROWN ON MULTILAYER SUBSTRATE. Acta Physica Sinica, doi: 10.7498/aps.41.1679
    [20] LI YAN-FEI. SUPERCONDUCTING FLUCTUATION AND PARACONDUCTIV-ITY IN AMORPHOUS ZrCo ALLOYS. Acta Physica Sinica, doi: 10.7498/aps.39.151
Metrics
  • Abstract views:  330
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2025
  • Accepted Date:  14 July 2025
  • Available Online:  24 July 2025
  • /

    返回文章
    返回