Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigations on the Physical Properties of Novel Amorphous Superconducting Thin Film Materials for Superconducting Nanowire Single-Photon Detectors

XU Luo ZHANG Xiaofu YOU Lixing

Citation:

Investigations on the Physical Properties of Novel Amorphous Superconducting Thin Film Materials for Superconducting Nanowire Single-Photon Detectors

XU Luo, ZHANG Xiaofu, YOU Lixing
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Amorphous superconducting thin film materials have the advantages of high superconducting uniformity and good optical response sensitivity, which make them ideal materials for fabricating large-area and mid-infrared superconducting nanowire single-photon detectors (SNSPD). In this paper, three series of different amorphous superconducting films were deposited on Si wafers by room-temperature magnetron co-sputtering. We systematically investigated the physical properties of these films as a function of film thickness, including the critical temperature Tc, the Ginzburg-Landau coherence length ξ(0), normal-state electron diffusion coefficient De, magnetic penetration depth λ(0) and superconducting energy gap Δ(0). When compared with amorphous tungsten silicide (WSi) and molybdenum germanide (MoGe) superconducting thin films, it was found that WGe alloys and WSi have similar superconducting properties, including critical temperature and coherence length, slightly lower normal-state electron diffusion coefficient and higher magnetic penetration depth. Compared to MoGe, both WGe and WSi alloys exhibit larger normal-state electron diffusion coefficient and higher magnetic penetration depths. By studying the superconducting properties of three different amorphous thin films, this research provides new material options and experimental evidence for the development and performance optimization of large-area, high-sensitivity superconducting nanowire single-photon detectors.
  • [1]

    Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114

    [2]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250

    [3]

    Shibata H, Fukao K, Kirigane N, Karimoto S, Yamamoto H 2017 IEEE Trans. Appl. Supercond. 27 2200504

    [4]

    Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Trans. Appl. Supercond. 29 2200204

    [5]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570

    [6]

    Khatri F I, Robinson B S, Semprucci M D, Boroson D M 2015 Acta Astronaut. 111 77

    [7]

    Zhang B, Guan Y, Xia L, Dong D, Chen Q, Xu C, Wu C, Huang H, Zhang L, Kang L, Chen J, Wu P 2021 Supercond. Sci. Technol. 34 034005

    [8]

    Taylor G G, Morozov D, Gemmell N R, Erotokritou K, Miki S, Terai H, Hadfield R H 2019 Opt. Express 27 38147

    [9]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [10]

    Zhang B, Chen Q, Guan Y Q, Jin F F, Wang H, Zhang L B, Tu X C, Zhao Q Y, Jia X Q, Kang L, Chen J, Wu P H 2021 Acta Phys. Sin. 70 198501(in Chinese)[张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨2021物理学报70 198501]

    [11]

    Verma V B, Korzh B, Walter A B, Lita A E, Briggs R M, Colangelo M, Zhai Y, Wollman E E, Beyer A D, Allmaras J P, Vora H, Zhu D, Schmidt E, Kozorezov A G, Berggren K K, Mirin R P, Nam S W, Shaw M D 2021 APL Photonics 6 056101

    [12]

    Chen L, Schwarzer D, Lau J A, Verma V B, Stevens M J, Marsili F, Mirin R P, Nam S W, Wodtke A M 2018 Opt. Express 26 14859

    [13]

    You L X 2018 Infrared and Laser Engineering 47 1202001(in Chinese)[尤立星2018红外与激光工程47 1202001]

    [14]

    Miki S, Takeda M, Fujiwara M, Sasaki M, Otomo A, Wang Z 2009 Appl. Phys. Lett. 2 075002

    [15]

    Sun R, Makise K, Zhang L, Terai H, Wang Z 2016 AIP Advances 6 065119

    [16]

    Cheng R S, Wang S H, Tang H X 2019 Appl. Phys. Lett. 115 241101

    [17]

    Tanner M G, Natarajan C M, Pottapenjara V K, O'Connor J A, Warburton R J, Hadfield R H, Baek B, Nam S, Dorenbos S N, Ureña E B, Zijlstra T, Klapwijk T M, Zwiller V 2010 Appl. Phys. Lett. 96 221109

    [18]

    Dorenbos S N, Reiger E M, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 131101

    [19]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photonics 7 210

    [20]

    Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114

    [21]

    Verma V B, Lita A E, Vissers M R, Marsili F, Pappas D P, Mirin R P, Nam S W 2014 Appl. Phys. Lett. 105 022602

    [22]

    Zhang X, Engel A, Wang Q, Schilling A, Semenov A, Sidorova M, Hübers H W, Charaev I, Ilin K, Siegel M 2016 Phys. Rev. B 94 174509

    [23]

    Häussler M, Mikhailov M Y, Wolff M A, Schuck C 2020 APL Photonics 5 076106

    [24]

    Baek B, Lita A E, Verma V, Nam S W 2011 Appl. Phys. Lett. 98 251105

    [25]

    Wollman E E, Allmaras J P, Beyer A D, Korzh B, Runyan M C, Narváez L, Farr W H, Marsili F, Briggs R M, Miles G J, Shaw M D 2024Opt. Express 32 48185

    [26]

    Verma V B, Korzh B, Bussières F, Horansky R D, Dyer S D, Lita A E, Vayshenker I, Marsili F, Shaw M D, Zbinden H, Mirin R P, Nam S W 2015 Opt. Express 23 33792

    [27]

    Zhang X, Ma R, Guo Z, Zhang C, Chen D, Huan Q, Huang J, Zhang X, Xiao Y, Yu H, Liu X, Li H, Wang Z, Xie X, You L 2023Opt. Express 31 30650

    [28]

    Ma R, Guo Z, Chen D, Dai X, Xiao Y, Zhang C, Xiong J, Huang J, Zhang X, Liu X, Rong L, Li H, Zhang X, You L 2025Adv. Photonics Nexus 4 026003

    [29]

    Banerjee A, Baker L J, Doye A, Nord M, Heath R M, Erotokritou K, Bosworth D, Barber Z H, MacLaren I, Hadfield R H 2017 Supercond. Sci. Technol. 30 084010

    [30]

    Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt. Express 25 26792

    [31]

    Ercolano P, Zhang X, Pepe G P, You L 2025 Supercond. Sci. Technol. 38 015011

    [32]

    Yang S, Chen Y, Sun L, Zhou H, Li Y, Huang J, Zheng X, Ma R, Xiong J, Wan Z, Liu X, Li H, Zheng J, Peng W, Zhang X, You L 2025 Appl. Phys. Lett. 126 162601

    [33]

    Zhang X, Charaev I, Liu H, Zhou T, Zhu D, Berggren K K, Schilling A 2021Supercond. Sci. Technol. 34 095003

    [34]

    Johnson W L, Tsuei C C, Raider S I, Laibowitz R B 1979 J. Appl. Phys. 50 4240

    [35]

    Zhang X, Lita A E, Sidorova M, Verma V B, Wang Q, Nam S W, Semenov A, Schilling A 2018 Phys. Rev. B 97 174502

    [36]

    Skocpol W J, Tinkham M 1975 Rep. Prog. Phys. 38 1049

    [37]

    Zhang X, Lita A E, Smirnov K, Liu H, Zhu D, Verma V B, Nam S W, Schilling A 2020 Phys. Rev. B 101 060508

    [38]

    Zhang X, Shu R, Liu H, Elsukova A, Persson P O A, Schilling A, Von Rohr F O, Eklund P 2022Commun. Phys. 5 282

    [39]

    Helfand E, Werthamer N R 1966 Phys. Rev. 147 288

    [40]

    Zhang X, Huan Q, Ma R, Zhang X, Huang J, Liu X, Peng W, Li H, Wang Z, Xie X, You L 2024Adv. Quantum Technol. 7 2300378

    [41]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [42]

    London H, London F 1935 Proc. R. Soc. London, Ser. A 149 71

    [43]

    Tinkham M, Emery V 1996 Phys. Today 49 65

    [44]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [45]

    Zotova A N, Vodolazov D Y 2012 Phys. Rev. B 85 024509

  • [1] Zhang Xing, Liu Yu-Lin, Li Gang, Yan Shao-An, Xiao Yong-Guang, Tang Ming-Hua. Erratum: Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit[Acta Phys. Sin. 2024, 73(6): 066103]. Acta Physica Sinica, doi: 10.7498/aps.73.079901
    [2] Shi Zhong-Yu, Dai Xu-Cheng, Wang Hao-Yu, Mai Zhan-Zhang, Ouyang Peng-Hui, Wang Yi-Zhuo, Chai Ya-Qiang, Wei Lian-Fu, Liu Xu-Ming, Pan Chang-Zhao, Guo Wei-Jie, Shu Shi-Bo, Wang Yi-Wen. Noise spectrum analysis of superconducting kinetic inductance detectors. Acta Physica Sinica, doi: 10.7498/aps.73.20231504
    [3] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, doi: 10.7498/aps.73.20231526
    [4] Chen Zhi-Gang, Zhang Wei-Jun, Zhang Xing-Yu, Wang Yu-Ze, Xiong Jia-Min, Hong Yi-Yu, Yuan Pu-Sheng, Wu Ling, Wang Zhen, You Li-Xing. Cryogenic DC-coupled readout electronics for high-speed superconducting nanowire single-photon detectors based on a commercial operational amplifier. Acta Physica Sinica, doi: 10.7498/aps.73.20240398
    [5] He Guang-Long, Xue Li, Wu Cheng, Li Hui, Yin Rui, Dong Da-Xing, Wang Hao, Xu Chi, Huang Hui-Xin, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Xia Ling-Hao, Zhang La-Bao, Wu Pei-Heng. Miniaturized superconducting single-photon detection system for airborne platform. Acta Physica Sinica, doi: 10.7498/aps.72.20230248
    [6] Xi Ling-Ling, Yang Xiao-Yan, Zhang Tian-Zhu, Xiao You, You Li-Xing, Li Hao. High comprehensive performance superconducting nanowire single photon detector. Acta Physica Sinica, doi: 10.7498/aps.72.20230326
    [7] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, doi: 10.7498/aps.71.20221594
    [8] Ma Lu-Yao, Zhang Xing-Yu, Shu Zhi-Yun, Xiao You, Zhang Tian-Zhu, Li Hao, You Li-Xing. Superconducting nanowire single photon detector under AC-bias with self-differential readout. Acta Physica Sinica, doi: 10.7498/aps.71.20220373
    [9] Zhang Xiao, Lü Jia-Yu, Guan Yan-Qiu, Li Hui, Wang Xi-Ming, Zhang La-Bao, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Wu Pei-Heng. Design and fabrication of single photon detector with ultra-large area superconducting nanowire array. Acta Physica Sinica, doi: 10.7498/aps.71.20221569
    [10] Huang Dian, Dai Wan-Lin, Wang Yi-Wen, He Qing, Wei Lian-Fu. Noise processing of superconducting kinetic inductance single photon detector. Acta Physica Sinica, doi: 10.7498/aps.70.20210185
    [11] Zhang Wen-Ying, Hu Peng, Xiao You, Li Hao, You Li-Xing. High-efficiency polarization-insensitive superconducting nanowire single photon detector. Acta Physica Sinica, doi: 10.7498/aps.70.20210486
    [12] Zhang Biao, Chen Qi, Guan Yan-Qiu, Jin Fei-Fei, Wang Hao, Zhang La-Bao, Tu Xue-Cou, Zhao Qing-Yuan, Jia Xiao-Qing, Kang Lin, Chen Jian, Wu Pei-Heng. Research progress of photon response mechanism of superconducting nanowire single photon detector. Acta Physica Sinica, doi: 10.7498/aps.70.20210652
    [13] Yan Xia-Chao, Zhu Jiang, Zhang La-Bao, Xing Qiang-Lin, Chen Ya-Jun, Zhu Hong-Quan, Li Jian-Ting, Kang Lin, Chen Jian, Wu Pei-Heng. Model of bit error rate for laser communication based on superconducting nanowire single photon detector. Acta Physica Sinica, doi: 10.7498/aps.66.198501
    [14] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, doi: 10.7498/aps.65.188501
    [15] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, doi: 10.7498/aps.64.228501
    [16] Zhang Qing-Ya, Dong Wen-Hui, He Gen-Fang, Li Tie-Fu, Liu Jian-She, Chen Wei. Review on superconducting transition edge sensor based single photon detector. Acta Physica Sinica, doi: 10.7498/aps.63.200303
    [17] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, doi: 10.7498/aps.61.208501
    [18] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, doi: 10.7498/aps.60.038501
    [19] WANG DE-NING, CHEN HONG, WANG WEI-YUAN. INVESTIGATION OF THERMAL CONDUCTANCE ON BOLOMETRIC INFRARED DETECTOR OF HI GH Tc SUPERCONDUCTING FILM GROWN ON MULTILAYER SUBSTRATE. Acta Physica Sinica, doi: 10.7498/aps.41.1679
    [20] LI YAN-FEI. SUPERCONDUCTING FLUCTUATION AND PARACONDUCTIV-ITY IN AMORPHOUS ZrCo ALLOYS. Acta Physica Sinica, doi: 10.7498/aps.39.151
Metrics
  • Abstract views:  55
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  24 July 2025
  • /

    返回文章
    返回