Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mean-field approximation model for multiferroicity and magnetoelectric coupling effects in polar magnet Co2Mo3O8

TANG Yongsen WANG Hanyan YU Bing LI Xing’ao

Citation:

Mean-field approximation model for multiferroicity and magnetoelectric coupling effects in polar magnet Co2Mo3O8

TANG Yongsen, WANG Hanyan, YU Bing, LI Xing’ao
cstr: 32037.14.aps.74.20250506
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In recent years, polar magnets M2Mo3O8 (M: 3d transition metal) have emerged as a research focus in condensed matter physics and materials science due to their unique crystal structures, multiple continuous magnetoelectric-coupled state transitions, and potential applications. Notably, Co2Mo3O8 exhibits a significant second-order nonlinear magnetoelectric coupling effect in its ground state, corresponding to a unique microscopic magnetoelectric coupling mechanism and practical value. In this work, based on a molecular field phenomenological model, two distinct antiferromagnetic sublattices for the Co2Mo3O8 system constructed and the temperature-dependent variations of its spontaneous magnetic moment, spin-induced ferroelectric polarization, first-order linear magnetoelectric coupling coefficient, and second-order nonlinear magnetoelectric coupling coefficient are presented. Particularly, the parameters t = –1 and o = –0.96 indicate distinct exchange energies between the magnetic sublattices associated with tetrahedron (Cot) and octahedron (Coo). The Co2+ ions in these two sublattices, which are characterized by different molecular field coefficients, synergistically mediate a spin-induced spontaneous polarization of PS ~ 0.12 μC/cm2 through the exchange striction mechanism and p-d hybridization mechanism in Co2Mo3O8. In addition, the significant second-order magnetoelectric coupling effect with a coefficient peaking at 7 × 10–18 s/A near the TN in Co2Mo3O8, with this coefficient being significantly larger than those of isostructural Fe2Mo3O8 (1.81 × 10–28 s/A) and Mn2Mo3O8, implies that this enhancement primarily arises from the weaker inter-sublattice antiferromagnetic exchange between its two sublattices, leading to a stabilizes metastable spin configuration. This also indicates that the Co2Mo3O8 system possesses stronger irreversibility stability and exhibits a pronounced magnetoelectric diode effect, providing a solid theoretical and computational foundation for developing magnetoelectric diodes.
      Corresponding author: TANG Yongsen, tangys@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12304124).
    [1]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55Google Scholar

    [2]

    Cheong S, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [3]

    Spaldin N A 2017 MRS Bulletin 42 385Google Scholar

    [4]

    Lu C L, Wu M H, Lin L, Liu J M 2019 Nat. Sci. Rev. 6 653Google Scholar

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519Google Scholar

    [6]

    南策文 2015 中国科学: 技术科学 45 339Google Scholar

    Nan C W 2015 Sci. Sin.: Tech. 45 339Google Scholar

    [7]

    刘俊明, 南策文 2014 物理 43 88Google Scholar

    Liu J M, Nan C W 2014 Physics 43 88Google Scholar

    [8]

    Li Z W, Zhang S Y, Li Q S, Liu H 2023 J. Adv. Dielect. 13 2345002Google Scholar

    [9]

    Liang M C, Yang J, Yang H Y, Liang C, Nie Z Y, Ai H, Zhang T, Ma J, Huang H B, Wang J 2024 J. Adv. Dielect. 14 2440002Google Scholar

    [10]

    Khade V, Wuppulluri M 2024 J. Adv. Dielect. 14 2340001Google Scholar

    [11]

    Wu F, Bao S, Zhou J, Wang Y, Sun J, Wen J, Wan Y, Zhang Q 2023 Nat. Phys. 19 1868Google Scholar

    [12]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [13]

    Wang Y Z, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep. 5 12268Google Scholar

    [14]

    Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar

    [15]

    Kurumaji T, Ishiwata S, Tokura Y 2015 Phys. Rev. X 5 031034Google Scholar

    [16]

    Chang Y, Weng Y, Xie Y, You B, Wang J, Li L, Liu J M, Dong S, Lu C 2023 Phys. Rev. Lett. 131 136701Google Scholar

    [17]

    Tang Y, Wang S, Lin L, Li C, Zheng S, Li C, Zhang J, Yan Z, Jiang X, Liu J M 2019 Phys. Rev. B 100 134112Google Scholar

    [18]

    Kim J, Artyukhin S, Mun E, Jaime M, Harrison N, Hansen A, Yang J, Oh Y, Vanderbilt D, Zapf V, Cheong S 2015 Phys. Rev. Lett. 115 137201Google Scholar

    [19]

    Rivera J P 1994 Ferroelectrics 161 165Google Scholar

    [20]

    Kurumaji T, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 045142Google Scholar

    [21]

    Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 020405(RGoogle Scholar

    [22]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 物理学报 67 157507Google Scholar

    Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507Google Scholar

    [23]

    申见昕, 尚大山, 孙阳 2018 物理学报 67 127501Google Scholar

    Shen J, Shang D, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar

    [24]

    Yu S, Gao B, Kim J, Cheong S W, Man M, Madéo J, Dani K, Talbayev D 2018 Phys. Rev. Lett. 120 037601Google Scholar

    [25]

    Tang Y, Zhou G, Lin L, Chen R, Wang J, Lu C, Huang L, Zhang J, Yan Z, Lu X, Huang X, Jiang X P, Liu J M 2022 Phys. Rev. B 105 064108Google Scholar

    [26]

    Reschke S, Farkas D, Strinić A, Ghara S, Guratinder K, Zaharko O, Prodan L, Tsurkan V, Szaller D, Bordács S, Deisenhofer J, Kézsmárki I 2022 npj Quantum Mater. 7 1Google Scholar

    [27]

    McAlister S, Strobel P 1983 J. Magn. Magn. 30 340Google Scholar

    [28]

    Tang Y, Zhang J, Lin L, Chen R, Wang J, Zheng S, Li C, Zhang Y, Zhou G, Huang L, Yan Z, Lu X, Wu D, Huang X, Jiang X, Liu J M 2021 Phys. Rev. B 103 014112Google Scholar

    [29]

    Schmid H 1973 Int. J. Magn. 4 337

    [30]

    Johnston D, McQueeney R, Lake B, Honecker A, Zhitomirsky M, Nath R, Furukawa Y, Antropov V, Yogesh Singh 2011 Phys. Rev. B 84 094445Google Scholar

    [31]

    Solovyev I V, Streltsov S V 2019 Phys. Rev. Matter. 3 114402Google Scholar

    [32]

    Taniguchi K, Abe N, Takenobu T, Iwasa Y, Arima T 2006 Phys. Rev. Lett. 97 097203Google Scholar

    [33]

    Balents L 2010 Nature 464 199Google Scholar

    [34]

    Joshua S J 1984 Aust. J. Phys. 37 305Google Scholar

    [35]

    豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文 2023 物理学报 72 157501Google Scholar

    Dou S, Yang X, Xia Y, Yuan J, Cui H, Wei B, Bai X, Feng C 2023 Acta Phys. Sin. 72 157501Google Scholar

    [36]

    宋骁, 高兴森, 刘俊明 2018 物理学报 67 157512Google Scholar

    Song X, Gao X, Liu J M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [37]

    Tang Y, Zhou S, Weng Y, Zhang A, Zhang Y, Zheng S, Li X 2025 Phys. Rev. B 111 134423Google Scholar

    [38]

    Wei X, Zhang X, Yu H, Gao L, Tang W, Hong M, Chen Z, Kang Z, Zhang Z, Zhang Y 2024 Nat. Electron. 7 138Google Scholar

  • 图 1  用Vesta软件做的Co2Mo3O8的(a)晶格结构图、(b)面外的磁结构图和(c)面内的磁结构

    Figure 1.  (a) Crystal structure, (b) the out-of-plane and (c) in-plane magnetic structure of Co2Mo3O8.

    图 2  (a), (b) 基于分子场近似, Cot和Coo 两个不同配位中Co2+自旋磁矩和总磁矩随温度的变化; (c), (d) 不同配位中Co2+的磁化率和总的磁化率随温度的关系; (e), (f) 磁矩对温度的微分和磁比热随温度的变化

    Figure 2.  (a), (b) Temperature-dependent variations of the Co2+ spin magnetic moment and total magnetic moment in two distinct coordination environments (Cot and Coo); (c), (d) temperature-dependent magnetic susceptibility and the total magnetic susceptibility; (e), (f) temperature derivative of the magnetic moment and temperature-dependent magnetic specific heat based on the molecular field approximation.

    图 3  基于分子场近似, 得到的Co2Mo3O8 (a) χimj (i, j = t, o)、(b) 一阶线性磁电耦合系数、(c) 自旋诱导的铁电极化和(d) 二阶线性磁电耦合系数随温度的变化

    Figure 3.  Temperature-dependent variations of (a) χimj (i, j = t, o), (b) first-order linear magnetoelectric coupling coefficient, (c) spin-induced ferroelectric polarization, and (d) second-order linear magnetoelectric coupling coefficient for Co2Mo3O8 based on the molecular field approximation.

    图 4  基于分子场近似, (a)—(c) Mn2Mo3O8和(d)—(f) Fe2Mo3O8 体系的基态下的磁电耦合效应数值计算结果

    Figure 4.  Numerical calculations on the magnetoelectric coupling effects in the ground state for (a)–(c) Mn2Mo3O8 and (d)–(f) Fe2Mo3O8 system based on the molecular field approximation.

    图 5  (a) Co2Mo3O8, (b) Fe2Mo3O8和(c) Mn2Mo3O8的磁结构

    Figure 5.  Magnetic structures of (a) Co2Mo3O8, (b) Fe2Mo3O8, and (c) Fe2Mo3O8.

  • [1]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55Google Scholar

    [2]

    Cheong S, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [3]

    Spaldin N A 2017 MRS Bulletin 42 385Google Scholar

    [4]

    Lu C L, Wu M H, Lin L, Liu J M 2019 Nat. Sci. Rev. 6 653Google Scholar

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519Google Scholar

    [6]

    南策文 2015 中国科学: 技术科学 45 339Google Scholar

    Nan C W 2015 Sci. Sin.: Tech. 45 339Google Scholar

    [7]

    刘俊明, 南策文 2014 物理 43 88Google Scholar

    Liu J M, Nan C W 2014 Physics 43 88Google Scholar

    [8]

    Li Z W, Zhang S Y, Li Q S, Liu H 2023 J. Adv. Dielect. 13 2345002Google Scholar

    [9]

    Liang M C, Yang J, Yang H Y, Liang C, Nie Z Y, Ai H, Zhang T, Ma J, Huang H B, Wang J 2024 J. Adv. Dielect. 14 2440002Google Scholar

    [10]

    Khade V, Wuppulluri M 2024 J. Adv. Dielect. 14 2340001Google Scholar

    [11]

    Wu F, Bao S, Zhou J, Wang Y, Sun J, Wen J, Wan Y, Zhang Q 2023 Nat. Phys. 19 1868Google Scholar

    [12]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [13]

    Wang Y Z, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep. 5 12268Google Scholar

    [14]

    Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar

    [15]

    Kurumaji T, Ishiwata S, Tokura Y 2015 Phys. Rev. X 5 031034Google Scholar

    [16]

    Chang Y, Weng Y, Xie Y, You B, Wang J, Li L, Liu J M, Dong S, Lu C 2023 Phys. Rev. Lett. 131 136701Google Scholar

    [17]

    Tang Y, Wang S, Lin L, Li C, Zheng S, Li C, Zhang J, Yan Z, Jiang X, Liu J M 2019 Phys. Rev. B 100 134112Google Scholar

    [18]

    Kim J, Artyukhin S, Mun E, Jaime M, Harrison N, Hansen A, Yang J, Oh Y, Vanderbilt D, Zapf V, Cheong S 2015 Phys. Rev. Lett. 115 137201Google Scholar

    [19]

    Rivera J P 1994 Ferroelectrics 161 165Google Scholar

    [20]

    Kurumaji T, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 045142Google Scholar

    [21]

    Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 020405(RGoogle Scholar

    [22]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 物理学报 67 157507Google Scholar

    Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507Google Scholar

    [23]

    申见昕, 尚大山, 孙阳 2018 物理学报 67 127501Google Scholar

    Shen J, Shang D, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar

    [24]

    Yu S, Gao B, Kim J, Cheong S W, Man M, Madéo J, Dani K, Talbayev D 2018 Phys. Rev. Lett. 120 037601Google Scholar

    [25]

    Tang Y, Zhou G, Lin L, Chen R, Wang J, Lu C, Huang L, Zhang J, Yan Z, Lu X, Huang X, Jiang X P, Liu J M 2022 Phys. Rev. B 105 064108Google Scholar

    [26]

    Reschke S, Farkas D, Strinić A, Ghara S, Guratinder K, Zaharko O, Prodan L, Tsurkan V, Szaller D, Bordács S, Deisenhofer J, Kézsmárki I 2022 npj Quantum Mater. 7 1Google Scholar

    [27]

    McAlister S, Strobel P 1983 J. Magn. Magn. 30 340Google Scholar

    [28]

    Tang Y, Zhang J, Lin L, Chen R, Wang J, Zheng S, Li C, Zhang Y, Zhou G, Huang L, Yan Z, Lu X, Wu D, Huang X, Jiang X, Liu J M 2021 Phys. Rev. B 103 014112Google Scholar

    [29]

    Schmid H 1973 Int. J. Magn. 4 337

    [30]

    Johnston D, McQueeney R, Lake B, Honecker A, Zhitomirsky M, Nath R, Furukawa Y, Antropov V, Yogesh Singh 2011 Phys. Rev. B 84 094445Google Scholar

    [31]

    Solovyev I V, Streltsov S V 2019 Phys. Rev. Matter. 3 114402Google Scholar

    [32]

    Taniguchi K, Abe N, Takenobu T, Iwasa Y, Arima T 2006 Phys. Rev. Lett. 97 097203Google Scholar

    [33]

    Balents L 2010 Nature 464 199Google Scholar

    [34]

    Joshua S J 1984 Aust. J. Phys. 37 305Google Scholar

    [35]

    豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文 2023 物理学报 72 157501Google Scholar

    Dou S, Yang X, Xia Y, Yuan J, Cui H, Wei B, Bai X, Feng C 2023 Acta Phys. Sin. 72 157501Google Scholar

    [36]

    宋骁, 高兴森, 刘俊明 2018 物理学报 67 157512Google Scholar

    Song X, Gao X, Liu J M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [37]

    Tang Y, Zhou S, Weng Y, Zhang A, Zhang Y, Zheng S, Li X 2025 Phys. Rev. B 111 134423Google Scholar

    [38]

    Wei X, Zhang X, Yu H, Gao L, Tang W, Hong M, Chen Z, Kang Z, Zhang Z, Zhang Y 2024 Nat. Electron. 7 138Google Scholar

  • [1] XIA Yongshun, CUI Huanqing, YANG Xiaokuo, GUO Baojun, DOU Shuqing, KANG Yan, WEI Bo, LIANG Bujia. Strain-driven reversible switching of Radial vortex in a bicomponent nanomagnet. Acta Physica Sinica, 2025, 74(16): 168503. doi: 10.7498/aps.74.20250575
    [2] Ji Hui-Hui, Gao Xing-Guo, Li Zhi-Lan. Dimensionality driven exchange coupling effect in cuprate-manganite superlattices. Acta Physica Sinica, 2024, 73(21): 216102. doi: 10.7498/aps.73.20240849
    [3] Shi Hong-Chao, Tang Bing, Liu Chao-Fei. Effect of interlayer exchange coupling interaction on topological phase of a bilayer honeycomb Heisenberg ferromagnet. Acta Physica Sinica, 2024, 73(13): 137501. doi: 10.7498/aps.73.20240437
    [4] Feng Jia-Feng, Chen Xing, Wei Hong-Xiang, Chen Peng, Lan Gui-Bin, Liu Yao-Wen, Guo Jing-Hong, Huang Hui, Han Xiu-Feng. Key performance of tunneling magnetoresistance sensing unit modulated by exchange bias of free layer. Acta Physica Sinica, 2023, 72(19): 197103. doi: 10.7498/aps.72.20231003
    [5] Zhang Jian-Qiang, Qin Yan-Jun, Fang Zheng, Fan Xiao-Zhen, Ma Yun, Li Wen-Zhong, Yang Hui-Ya, Kuang Fu-Li, Zhai Yao, Shi Ying-Long, Dang Wen-Qiang, Ye Hui-Qun, Fang Yun-Zhang. Regulation mechanism of giant magneto-impedance effect of multi-field coupling Fe-based alloy. Acta Physica Sinica, 2022, 71(23): 237501. doi: 10.7498/aps.71.20221376
    [6] Shi Li-Yu, Wu Dong, Wang Zi-Xiao, Lin Tong, Zhang Si-Jie, Liu Qiao-Mei, Hu Tian-Chen, Dong Tao, Wang Nan-Lin. Terahertz emission spectrum of polar antiferromagnet Fe2Mo3O8. Acta Physica Sinica, 2020, 69(20): 204206. doi: 10.7498/aps.69.20201545
    [7] Chen Tao, Yan Bo. Laser cooling and trapping of polar molecules. Acta Physica Sinica, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [8] Lu Bo, Wang Da-Jun. Ultracold dipolar molecules. Acta Physica Sinica, 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [9] Chen Ai-Tian, Zhao Yong-Gang. Progress of converse magnetoelectric coupling effect in multiferroic heterostructures. Acta Physica Sinica, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [10] Shen Jian-Xin, Shang Da-Shan, Sun Young. Fundamental circuit element and nonvolatile memory based on magnetoelectric effect. Acta Physica Sinica, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [11] Wu Mei-Xia, Li Man-Rong. Multiferroic properties of exotic double perovskite A2BB' O6. Acta Physica Sinica, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [12] Yu Bin, Hu Zhong-Qiang, Cheng Yu-Xin, Peng Bin, Zhou Zi-Yao, Liu Ming. Recent progress of multiferroic magnetoelectric devices. Acta Physica Sinica, 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [13] Zhang Yuan, Gao Yan-Jun, Hu Cheng, Tan Xing-Yi, Qiu Da, Zhang Ting-Ting, Zhu Yong-Dan, Li Mei-Ya. Optimization design for magnetoelectric coupling property of the magnet/bimorph composite. Acta Physica Sinica, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [14] Li Yong-Chao, Zhou Hang, Pan Dan-Feng, Zhang Hao, Wan Jian-Guo. Exchange bias effect and magnetoelectric coupling behaviors in multiferroic Co/Co3O4/PZT composite thin films. Acta Physica Sinica, 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [15] Li Yan-Jie, Liu Jin-Ming. Tripartite quantum correlations of polar molecules in pendular states. Acta Physica Sinica, 2014, 63(20): 200302. doi: 10.7498/aps.63.200302
    [16] Cui Ping, Lu Yang, Ji Ai-Ling, Sun Gang, Lu Kun-Quan, Wang Xue-Zhao, Shen Rong. Electrical conduction mechanism in polar molecule dominated electrorheological fluid. Acta Physica Sinica, 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [17] Wang Xian-Jie, Sui Yu, Qian Zheng-Nan, Cheng Jin-Guang, Liu Zhi-Guo, Li Yan, Su Wen-Hui, Ong C. K.. Large intragranular low field magnetoresistance in polycrystalline Sr2Fe1-xAlxMoO6 compounds. Acta Physica Sinica, 2005, 54(2): 907-911. doi: 10.7498/aps.54.907
    [18] WANG YI-ZHONG, HU JI-FAN, ZHANG SHAO-YING, ZHANG HONG-WEI, SHEN BAO-GEN. MAGNETIC PROPERTIES OF Nd-Fe(Co,Nb)-B EXCHANGE COUPLING MAGNET. Acta Physica Sinica, 1999, 48(3): 520-526. doi: 10.7498/aps.48.520
    [19] HUANG ZHUO-HE, CHEN CHUAN-YU, LIANG SHI-DONG. STRONG COUPLING POLARON WITHIN POLAR CRYSTAL SLAB IN A MAGNETIC FIELD. Acta Physica Sinica, 1997, 46(4): 715-723. doi: 10.7498/aps.46.715
    [20] CHEN HUI-YU, LUO YOU-QUAN, ZHU HONG, WEN LIN-QING. UNIDIRECTIONAL ANISOTROPY MAGNETORESISTANCE AND EXCHANGE COUPLING IN 81 NiFe/Cr MULTILAYER. Acta Physica Sinica, 1994, 43(7): 1185-1191. doi: 10.7498/aps.43.1185
Metrics
  • Abstract views:  707
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2025
  • Accepted Date:  20 July 2025
  • Available Online:  28 July 2025
  • Published Online:  20 September 2025
  • /

    返回文章
    返回