Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz emission spectrum of polar antiferromagnet Fe2Mo3O8

Shi Li-Yu Wu Dong Wang Zi-Xiao Lin Tong Zhang Si-Jie Liu Qiao-Mei Hu Tian-Chen Dong Tao Wang Nan-Lin

Citation:

Terahertz emission spectrum of polar antiferromagnet Fe2Mo3O8

Shi Li-Yu, Wu Dong, Wang Zi-Xiao, Lin Tong, Zhang Si-Jie, Liu Qiao-Mei, Hu Tian-Chen, Dong Tao, Wang Nan-Lin
cstr: 32037.14.aps.69.20201545
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In polar materials, the transition of electrons in momentum space will change the spontaneous polarization. When excited by femtosecond pulse laser, the transient modulation of the electric polarization will radiate electromagnetic wave at terahertz frequency. In a magnetic ordered system, the coherent excited spin wave radiates electromagnetic waves of the same frequency in the process of precession and relaxation. The investigation of the terahertz emission spectra of these materials not only helps us to understand the ferroelectric and magnetic ordered dynamic processes of materials, but also provides a reference for searching for new terahertz sources. We study the terahertz emission spectrum of the polar antiferromagnet Fe2Mo3O8. Under the pumping of 800 nm laser, electrons in the material are excited across the band gap leading the electric polarization to be ultra-fast modulated. The broadband terahertz excitation spectrum from 0.1 to 3.5 THz is observed, and the direction of the terahertz electric field is along the inherent electric polarization direction of the material. After entering into the magnetic order state, two new single-frequency terahertz oscillations are observed, located at 1.25 THz and 2.7 THz respectively, which correspond to the excitation of the two antiferromagnetic spin waves of Fe2Mo3O8.
      Corresponding author: Wang Nan-Lin, nlwang@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11888101) and the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904, 2016YFA0300902)
    [1]

    Kawayama I, Zhang C H, Wang H B, Tonouchi M 2013 Supercond Sci. Tech. 26 093002Google Scholar

    [2]

    Turner G M, Harrel S M, Beard M C 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [3]

    Klatt G, Hilser F, Qiao W, Beck M, Gebs R, Bartels A, Huska K, Lemmer U, Bastian G, Johnston M B, Fischer M, Faist J, Dekorsy T 2010 Opt. Express 18 4939Google Scholar

    [4]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046Google Scholar

    [5]

    Wang Y Z, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep.-UK 5 12268Google Scholar

    [6]

    Kurumaji T, Ishiwata S, Tokura Y 2015 Phys. Rev. X 5 031034

    [7]

    Li Y, Gao G, Yao K L 2017 EPL (Europhysics Letters) 118 37001Google Scholar

    [8]

    Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 020405Google Scholar

    [9]

    Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y 2017 Phys. Rev. Lett. 119 077206Google Scholar

    [10]

    Yu S K, Gao B, Kim J W, Cheong S W, Man M K L, Madéo J, Dani K M, Talbayev D 2018 Phys. Rev. Lett. 120 037601Google Scholar

    [11]

    Shi L Y, Wu D, Wang Z X, Lin T, Hu C M, Wang N L 2020 arXiv 2004.05823

    [12]

    Strobel P, Page Y L 1983 J. Cryst. Growth 61 329Google Scholar

    [13]

    Strobel P, Page Y L, McAlister S P 1982 J. Solid State Chem. 42 242Google Scholar

    [14]

    Zhou R Z, Jin Z M, Li G F, Ma G H, Cheng Z X, Wang X L 2012 Appl. Phys. Lett. 100 061102Google Scholar

    [15]

    Xu L, Zhang X C, Auston D H 1992 Appl. Phys. Lett. 61 1784Google Scholar

    [16]

    Liu T A, Tani M, Nakajima M, Hangyo M, Sakai K, Nakashima S I, Pan C L 2004 Opt. Express 12 2954Google Scholar

    [17]

    Sotome M, Nakamura M, Fujioka J, Ogino M, Kaneko Y, Morimoto T, Zhang Y, Kawasaki M, Nagaosa N, Tokura Y, Ogawa N 2019 P. Natl. Acad. Sci. USA 116 1929Google Scholar

    [18]

    Takahashi K, Kida N, Tonouchi M 2006 Phys. Rev. Lett. 96 117402Google Scholar

    [19]

    Takahashi K, Tonouchi M 2007 Appl. Phys. Lett. 90 052908Google Scholar

    [20]

    Rana D S, Kawayama I, Mavani K, Takahashi K, Murakami H, Tonouchi M 2009 Adv. Mater. 21 2881Google Scholar

  • 图 1  Fe2Mo3O8晶体的晶格结构与磁结构

    Figure 1.  Crystal structure and magnetic structure of Fe2Mo3O8

    图 2  太赫兹发射谱测量实验示意图 (a) 实验光路图; (b) 泵浦光激发太赫兹的示意图

    Figure 2.  schematic diagram of the measurement of the THz emission spectrum: (a) optical path of the experiment system; (b) schematic diagram of the THz emission from optical pump.

    图 3  太赫兹发射谱测量结果 (a) ac面样品60 K的太赫兹发射谱的时域谱线; (b) (a)图中时域谱线的傅里叶变换; (c) ac面样品10 K 的太赫兹发射谱的时域谱线; (d) (c)图中时域谱线的傅里叶变换; (e) ab 面样品60 K 的太赫兹发射谱的时域谱线; (f) (e)图中时域谱线的傅里叶变换; (g) ab面样品10 K的太赫兹发射谱的时域谱线; (h) (g)图中时域谱线的傅里叶变换;

    Figure 3.  THz emission spectra : (a) Time domain spectrum of ac plane at 60 K; (b) Fourier transform spectrum of (a); (c) time domain spectrum of ac plane at 10 K; (d) Fourier transform spectrum of (c); (e) time domain spectrum of ab plane at 60 K; (f) Fourier transform spectrum of (e); (g) time domain spectrum of ab plane at 10 K; (h) Fourier transform spectrum of (g).

    图 4  (a) 太赫兹时域信号峰值随泵浦光功率的变化; (b) 傅里叶变换光谱仪测得的Fe2Mo3O8的电导率谱

    Figure 4.  (a) Fluence dependence of the THz intensity; (b) Optical conductivity of Fe2Mo3O8 measured by Fourier transform spectrometer.

  • [1]

    Kawayama I, Zhang C H, Wang H B, Tonouchi M 2013 Supercond Sci. Tech. 26 093002Google Scholar

    [2]

    Turner G M, Harrel S M, Beard M C 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [3]

    Klatt G, Hilser F, Qiao W, Beck M, Gebs R, Bartels A, Huska K, Lemmer U, Bastian G, Johnston M B, Fischer M, Faist J, Dekorsy T 2010 Opt. Express 18 4939Google Scholar

    [4]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046Google Scholar

    [5]

    Wang Y Z, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep.-UK 5 12268Google Scholar

    [6]

    Kurumaji T, Ishiwata S, Tokura Y 2015 Phys. Rev. X 5 031034

    [7]

    Li Y, Gao G, Yao K L 2017 EPL (Europhysics Letters) 118 37001Google Scholar

    [8]

    Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 020405Google Scholar

    [9]

    Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y 2017 Phys. Rev. Lett. 119 077206Google Scholar

    [10]

    Yu S K, Gao B, Kim J W, Cheong S W, Man M K L, Madéo J, Dani K M, Talbayev D 2018 Phys. Rev. Lett. 120 037601Google Scholar

    [11]

    Shi L Y, Wu D, Wang Z X, Lin T, Hu C M, Wang N L 2020 arXiv 2004.05823

    [12]

    Strobel P, Page Y L 1983 J. Cryst. Growth 61 329Google Scholar

    [13]

    Strobel P, Page Y L, McAlister S P 1982 J. Solid State Chem. 42 242Google Scholar

    [14]

    Zhou R Z, Jin Z M, Li G F, Ma G H, Cheng Z X, Wang X L 2012 Appl. Phys. Lett. 100 061102Google Scholar

    [15]

    Xu L, Zhang X C, Auston D H 1992 Appl. Phys. Lett. 61 1784Google Scholar

    [16]

    Liu T A, Tani M, Nakajima M, Hangyo M, Sakai K, Nakashima S I, Pan C L 2004 Opt. Express 12 2954Google Scholar

    [17]

    Sotome M, Nakamura M, Fujioka J, Ogino M, Kaneko Y, Morimoto T, Zhang Y, Kawasaki M, Nagaosa N, Tokura Y, Ogawa N 2019 P. Natl. Acad. Sci. USA 116 1929Google Scholar

    [18]

    Takahashi K, Kida N, Tonouchi M 2006 Phys. Rev. Lett. 96 117402Google Scholar

    [19]

    Takahashi K, Tonouchi M 2007 Appl. Phys. Lett. 90 052908Google Scholar

    [20]

    Rana D S, Kawayama I, Mavani K, Takahashi K, Murakami H, Tonouchi M 2009 Adv. Mater. 21 2881Google Scholar

Metrics
  • Abstract views:  10978
  • PDF Downloads:  247
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2020
  • Accepted Date:  03 July 2020
  • Available Online:  15 October 2020
  • Published Online:  20 October 2020
  • /

    返回文章
    返回